
Control Engineering

mega Drive-Line IIO

Technical Description
and Operating Instructions

BAUMÜLLER

E 5.00005.02
Edition: July 2001

BAUMÜLLER

CONTROL ENGINEERING �MEGA DRIVE-LINE II

Technical Description and Operating Instructions

Edition: July, 1st 2001

Document no. 5.00005.02

This operation manual is intended as a complement to the technical description and the operation ma-
nual of the apparatus.

BEFORE CARRYING OUT COMMISSIONING, CAREFULLY
READ AND OBSERVE THE OPERATING INSTRUCTIONS

AND SAFETY INFORMATION

This document contains all the information necessary to correctly use the products it describes. It is in-
tended for specially trained, technically qualified personnel who are well-versed in all warnings and com-
missioning activities.

The equipment is manufactured using state-of-the-art technology and is safe in operation. It can safely
be installed and commissioned and functions without problems if the safety information is followed.

You may not carry out commissioning until it has been established that the machine into which this com-
ponent is to be installed complies with the specifications of the EC machine guidelines.

This technical description/these operating instructions invalidate all previous descriptions of the corre-
sponding product. Within the scope of further development of our products, Baumüller GmbH reserves
the right to change their technical data and handling.

Manufacturer and Baumüller Nürnberg GmbH
Supplier’s Address: Ostendstr. 80

D-90482 Nürnberg
 Tel. ++49 (0)9 11/54 32 - 0
 Fax ++49 (0)9 11/54 32 - 1 30

Copyright: These operating instructions or extracts from them may not be copied or dupli-
cated without our permission.

Country of Origin: Germany

Date of Manufacture: Determined from the serial number on the equipment
Control Engenieering �mega Drive-Line II
Baumüller Nürnber g GmbH 5.00005.02

2 Control Engenieering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

Table of con tents
TABLE OF CONTENTS

1 Safety Information ... 7

2 Technical Data ... 9

2.1 General ... 9

2.2 Functionality .. 10

2.3 Functional Structure .. 11

3 Installation .. 13

3.1 Displays and Operator Controls .. 13

3.2 Display .. 14

3.2.1 Seven-Segment Display ... 14
3.2.2 LED Display .. 14

3.3 Pin Assignments ... 15

3.3.1 Setting the Slave Number .. 20
3.3.2 Information on Configuration .. 20

3.4 Connecting cables .. 21

3.5 Accessories ... 23

4 �mega Drive-Line II and PROPROG wt II ... 25

4.1 PROPROG wt II – an Efficient, Powerful and Comprehensive Programming Tool 25

4.2 �mega Drive-Line II Project ... 26

4.3 �mega Drive-Line II Configuration ... 27

4.4 �mega Drive-Line II Resource ... 28

4.4.1 Communication and Connection .. 29
4.4.2 Control Dialog for Resources ... 32
4.4.3 The �mega Drive-Line II Board Seven-Segment Display 36
4.4.4 Data Area ... 37
4.4.5 The �mega Drive-Line II Event Tasks ... 39

4.5 �mega Drive-Line II User Libraries .. 41

4.5.1 �mega Drive-Line II Firmware ... 42
4.5.2 The �mega Drive-Line II Board Functions .. 43
4.5.3 Die �mega Drive-Line II Data Types ... 48
4.5.4 The Standard Function Block Libraries .. 49
4.5.5 The �mega Drive-Line II Technology Components .. 49
4.5.6 Inserting a User Library into a Project .. 50

4.6 �mega Drive-Line II Option Interfaces, Interrupt Sources and Trigger Signals 52

4.6.1 The Interrupt Sources and Trigger Signals .. 52
4.6.2 Trigger Signal Interconnection and Timer Configuration via Function Block OPT_INIT

... 53
4.6.3 Using Function Block OPT_INIT .. 55
4.6.4 The Base Addresses of the Option Interfaces .. 56
4.6.5 Controller-Specific Mapping of the Hardware Areas .. 56
Control Engenieering �mega Drive-Line II III
Baumüller Nürnber g GmbH 5.00005.02

Table of contents
4.6.6 Sample Configurations ... 57
4.6.7 Implementing a BAPS in a BAPS Event Task .. 59
4.6.8 Implementing a high-precision BAPS in a timer event task 60
4.6.9 Implementing a BAPS within the CANsync synchronous bus system 63
4.6.10 Implementing a timer event task for cyclical serial communication. 67

5 Ethernet (optional) ... 71

5.1 General ... 71

5.2 Setting the IP Address and the IP Mask ... 73

5.2.1 Self-Selected, Fixed IP Address ... 73
5.2.2 Self-Selected, Variable IP Address .. 74
5.2.3 Preset, Variable IP Address (Delivery Status) .. 75

5.3 Setting the Response with Routers on the Network .. 77

5.4 Communication Between �mega Drive-Line II and PROPROG wt II via Ethernet 78

6 BAPS Baumüller Drives Parallel Interface .. 79

6.1 BAPS General ... 79

6.2 Function Blocks for BAPS Overview ... 81

6.2.1 BAPS_INIT ... 82
6.2.2 BAPS_PAR_READ .. 89
6.2.3 BAPS_PAR_WRITE ... 92
6.2.4 BAPS_PD_COMM2 ... 95
6.2.5 BAPS_PD_COMM24 ... 100
6.2.6 BAPS_PD_COMM8 ... 107
6.2.7 BAPS_PD_CONTROL ... 112
6.2.8 BAPS_SD_CONTROL ... 113

7 CANsync ... 115

7.1 General ... 115

7.1.1 Overview .. 115
7.1.2 Information on Programming .. 125

7.2 Detailed Information on CANsync ... 128

7.2.1 Structure of Message Frames .. 130
7.2.2 Register Structure and Function of the �mega CANsync Master 138
7.2.3 Register Structure and Function of the �mega CANsync Slave 164

7.3 CANsync Function Blocks ... 189

7.3.1 Function Blocks for the Synchronized CAN Overview 189
7.3.2 CANsync_BC_MA0 .. 190
7.3.3 CANsync_BC_MA1 .. 192
7.3.4 CANsync_BC_MA2 .. 194
7.3.5 CANsync_BC_SL ... 196
7.3.6 CANsync_COMM_CONTROL_MA .. 198
7.3.7 CANsync_CONTROLWORD_MA .. 201
7.3.8 CANsync_CONTROLWORD_SL ... 203
7.3.9 CANsync_INIT .. 205
7.3.10 CANsync_MODE_MA .. 210
7.3.11 CANsync_MODE_SL ... 213
7.3.12 CANsync_PAR_READ_MA .. 216
7.3.13 CANsync_PAR_SL ... 219
IV Control Engenieering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

Table of con tents
7.3.14 CANsync_PAR_WRITE_MA .. 223
7.3.15 CANsync_PD_CFG_MA .. 226
7.3.16 CANsync_PD_CFG_READ_MA .. 229
7.3.17 CANsync_PD_CFG_READ_SL ... 232
7.3.18 CANsync_PD_CFG_SL ... 235
7.3.19 CANsync_PD_COMM_MA ... 240
7.3.20 CANsync_PD_COMM_READ_MA ... 245
7.3.21 CANsync_PD_COMM_READ_SL .. 247
7.3.22 CANsync_PD_COMM_SL .. 249
7.3.23 CANsync_SL_TYP_INIT .. 254
7.3.24 CANsync_UPDOWNLOAD_MA ... 256
7.3.25 CANsync_UPDOWNLOAD_SL .. 261

8 Index ... 265
Control Engenieering �mega Drive-Line II V
Baumüller Nürnber g GmbH 5.00005.02

Table of contents
VI Control Engenieering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

Safety Information
1 SAFETY INFORMATION

General Information

These operating instructions contain all the information necessary for correct operation of the products
described. The document is intended for specially trained, technically qualified personnel who are well-
versed in all warnings and commissioning activities.

The equipment is manufactured using state-of-the-art technology and is safe in operation. It can safely
be installed and commissioned and functions without problems if the safety information in these opera-
ting instructions is followed.

Danger Information

In the context of the operating instructions and the information on the products themselves, the terms
used have the following meanings:

This means that death, severe personal injury , or damage to property
will occur unless appropriate safety measures are taken.

This means that death, severe personal injury , or damage to property
may occur unless appropriate safety measures are taken.

This draws your attention to important information about the product,
handling of the product or to a particular section of the documentation.

On the one hand, the information below is for your own personal safety and on the other to prevent
damage to the described products or to other connected equipment.

DANGER

WARNING

NOTE
Control Engineering �mega Drive-Line II 7
Baumüller Nürnber g GmbH 5.00005.02

Safety Information
Qualified Personnel

In the context of the safety-specific information in this document or on the products themselves, qualified
personnel are considered to be persons who are familiar with setting up, assembling, commissioning and
operating the product and who have qualifications appropriate to their activities:

� Trained or instructed or authorized to commission, ground and mark circuits and equipment in acor-
dance with recognized safety standards.

� Trained or instructed in accordance with recognized safety standards in the care and use of appro-
priate safety equipment.

Appropriate Use

You may only use the equipment/system for the purposes specified in the
operating instructions and in conjunction with the third-party equipment and
components recommended or authorized by BAUMÜLLER NÜRNBERG
GmbH.

For safety reasons, you must not change or add components on/to the
equipment/system.

The machine minder must report immediately any changes that occur which
adversely affect the safety of the equipment/system.

WARNING
8 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

Technical Data
2 TECHNICAL DATA

2.1 General

The �mega Drive-Line II is a drive-integrated PLC for implementing distributed intelligent drive techno-
logy. For this, you can optionally add to the V-controller the �mega Drive-Line II.

The �mega Drive-Line II implements the functionality of a drive-integrated PLC, e.g. configurable con-
trol engineering, cam disk, position acquisition, digital and analog inputs and outputs or synchronous bus
system.

The CANsync synchronous bus system is available for bus communication with peripheral modules. You
can link HMIs like operator panels, touchscreens, etc.) via the integrated RS485 port by means of a soft-

ware interface module to the 3964R® procedure (data block link). As an alternative, you can operate this

interface via a software interface module to the USS protocol®, with the �mega Drive-Line II functioning

as the master that can activate several USS protocol®-capable slaves.

The 3964R® procedure and the USS protocol ® are registered trademarks of Siemens AG.

You can carry out open- and closed-loop programming of the �mega Drive-Line II either via the stan-
dard RS232 port as a point-to-point connection or via the optional Ethernet interface (TCP/IP including
the corresponding networking options of several �mega Drive-Line IIs in the machine system).

In addition, it is possible to extend the range of functions using two option boards in two option slots. The
following option boards are available, for example:

� MFM-01 for digital and analog inputs and outputs.

� IEI-02 for acquiring positions and print marks via two channels.

� CAN-M-01 for the CAN bus link.

You carry out open- and closed-loop programming in a modular way using the PROPROG wt II
IEC 61131-3 programming environment in the following programming languages:

� Sequential Function Chart, SFC

� Structured text, ST

� Instruction List, IL

� Function Block Diagram, FBD

� Ladder Diagram, LD

Apart from this, you can use libraries to implement intelligent drive functionality, like:

� Cam disk

� Register controller

� Winder

In addition to the PR OP RO G wt II IEC 61131-3 program m ing env ironm ent, you can in tegra te in to the g lo -
ba l m achine concept an OPC server fo r linking visua liza tion tasks and param eterizations v ia O PC c lients.
Control Engineering �mega Drive-Line II 9
Baumüller Nürnber g GmbH 5.00005.02

Technical Data
2.2 Functionality

� 120 MHz 32-bit RISC-CPU

� 2046 kB of program memory for

– A maximum of 400,000 IL lines (LD/ST statements to global variables)

– Typically 120,000 IL lines (typical IL statements to structures and instance variables)

� 2 MB variable RAM (= total storage area of non retain flags)

� 1460 kB of dynamic memory for debug and logic analyzer functions

� cycle time of 100 µs per 1000 lines of Instruction list (IL)

� 56 kB of NOVRAM non-volatile data memory (= total storage area of retain flags)

� RS232 serial programming interface at 38,400 bps, optically isolated from the �mega Drive-Line II

� R S485 term ina l in te rface at a m ax im um of 38 ,400 bps, op tica lly iso la ted from the �m ega Drive-L ine II

� Two option slots for extending the system

You can fit two types of option boards:

I/O boards, e.g. IEI (incremental counter module), MFM (digital and analog inputs and outputs)

Field bus boards, e.g. CAN

The following combinations of option boards are possible:

two I/O boards

one I/O board and on field bus board

You cannot combine two field bus boards.

� Two CANsync nodes at a maximum of 500 kbps optically isolated from the �mega Drive-Line II

� 10/100 Mbit Ethernet interface (optional)

� Power consumption 5.5 W
10 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

Technical Data
2.3 Functional Structure

Block diagram of �mega Drive-Line II
Control Engineering �mega Drive-Line II 11
Baumüller Nürnber g GmbH 5.00005.02

Technical Data
Block diagram of Ethernet
12 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

Installation
3 INSTALLATION

3.1 Displays and Operator Controls

�mega Drive-Line II
Control Engineering �mega Drive-Line II 13
Baumüller Nürnber g GmbH 5.00005.02

Installation
3.2 Display

3.2.1 Seven-Segment Display

For the meanings of the displayed numbers and letters, refer to The �mega Drive-Line II Board Seven-
Segment Display on Page 36.

3.2.2 LED Display

LEDs of the �mega Drive-Line II

You can freely program the four LEDs (the green ones on the left and the red one on the right). For pro-
gramming, refer to The �mega Drive-Line II Board Functions on Page 43.
14 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

Installation
3.3 Pin Assignments

RS232 port (PROPROG wt II)

X 31 SUB-D female connector

SUB-D female connector

The signal grounds of the RS232 and RS485 ports are connected together.

Pin No. Assignment
1 Not assigned

2 TxD (Transmit Data)

3 RxD (Receive Data)

4 Connected to pin 6

5 GND (Signal Ground)

6 Connected to pin 4

7 CTS (Clear to Send)

8 RTS (Request to Send)

9 Not assigned

NOTE
Control Engineering �mega Drive-Line II 15
Baumüller Nürnber g GmbH 5.00005.02

Installation
RS485 port (terminal interface)

X 32 SUB-D female connector

SUB-D female connector

The signal grounds of the RS232 and RS485 ports are connected together.

Pin No. Assignment
1 TxD- (Transmit Data negative)

2 VCC (+5V output for supplying external senders/
receivers)

3 GND (Signal Ground RS232/RS485)

4 GND (Signal Ground RS232/RS485)

5 RxD- (Receive Data negative)

6 RxD+ (Receive Data positive)

7 GND (Signal Ground RS232/RS485)

8 GND (Signal Ground RS232/RS485)

9 TxD+ (Transmit Data positive)

NOTE
16 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

Installation
CANsync node 1

X 35/X36 RJ45 female connector

RJ45 female connector

The pins of X35 and X36 with the same numbers are connected together on the printed circuit board,
i.e. the CANsync interface is made available on both female connectors.

The signal grounds of CANsync node 1 and node 2 are connected together.

Pin No. Assignment
1 GND-CAN (Signal Ground CAN)

2 GND-CAN (Signal Ground CAN)

3 Not assigned

4 CAN1-SYNC- (SYNC signal negative node 1)

5 CAN1-SYNC+ (SYNC signal positive node 1)

6 Not assigned

7 CAN1H (CAN bus line dominant high node 1)

8 CAN1L (CAN bus line dominant low node 1)

NOTE
Control Engineering �mega Drive-Line II 17
Baumüller Nürnber g GmbH 5.00005.02

Installation
CANsync node 2

X37/X38 RJ45 female connector

RJ45 female connector

The pins of X3 and X38 with the same numbers are connected together on the printed circuit board, i.e.
the CANsync interface is made available on both female connectors.

The signal grounds of CANsync node 1 and node 2 are connected together.

Pin No. Assignment
1 GND-CAN (Signal Ground CAN)

2 GND-CAN (Signal Ground CAN)

3 Not assigned

4 CAN2-SYNC- (SYNC signal negative node 2)

5 CAN2-SYNC+ (SYNC signal negative node 2)

6 Not assigned

7 CAN2H (CAN bus line dominant high node 2)

8 CAN2L (CAN bus line dominant low node 2)

NOTE
18 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

Installation
24-V supply voltage of ����mega Drive-Line II (X34) for SYNC signal

10/100 Mbit Ethernet interface module (optional)

X39 RJ45 female connector

RJ45 female connector

Pin No. Assignment
3 24 V ground

4 +24 V supply voltage

Pin No. Assignment
1 TX+ (Transmit line +)

2 TX- (Transmit line -)

3 RX+ (Receive line +)

4 Not assigned

5 Not assigned

6 RX- (Receive line -)

7 Not assigned

8 Not assigned
Control Engineering �mega Drive-Line II 19
Baumüller Nürnber g GmbH 5.00005.02

Installation
3.3.1 Setting the Slave Number

Using DIP switches 1-5 (S 33) on the �mega board (the middle board in the cassette), you set the bi-
nary-coded slave number with which the CANsync slave interface module is to be operated on the �me-
ga Drive-Line II. You must set for each CANsync slave interface modules on a CANsync bus a unique
slave number that must be different from all the rest (one CANsync master interface module and up to
32 CANsync slave interface modules).

3.3.2 Information on Configuration

There are two CANsync interface modules on the printed circuit board. They are used to connect a CAN-
sync bus to a CANsync bus of a sublevel. This forms a network with several levels.

You must configure on the printed circuit board one interface module as a CANsync slave and one in-
terface module as a CANsync master (slave for SYNC signal).

The functionality of the CANsync master and the CANsync slave interface modules is described in chap-
ter 6.

You can change in software the preset IP address for Ethernet
(192.168.1.“1+DIP switch“, DIP switch = Bit 4 ... 0). See “Setting the IP
Address and the IP Mask” on page 73 and “Communication via Ethernet
(optional)” on page 30.

NOTE
20 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

Installation
3.4 Connecting cables

Serial connecting cable for PC to �mega Drive-Line II

� 9-pin PC connection

� 25-pin PC connection
Control Engineering �mega Drive-Line II 21
Baumüller Nürnber g GmbH 5.00005.02

Installation
Serial Connecting cable for RS485 (drive networking)

� ����mega ⇔ BUS 6 V-controller (4-wire connection and ground with 9-pin male connector)

� Interconnection of the last node in the ring (e.g. 9-pin terminal female connector at the controller)

The +5 V are for supplying RS485/RS232 adapters and must not be con-
nected together in the ring.

The last node in the ring should be terminated with the resistor network
shown above.

NOTE
22 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

Installation
3.5 Accessories

Cable for programming interface (serial RS232)

Line type: K-SS-01-xx (9-pin male, 9-pin female)

Cable for CANsync/CAN

Line type: K-CAN-33-xx (RJ male connector, RJ male connector):

Line type: K-CAN-13-xx (RJ male connector, SUB-D male connector):

Terminating resistor connector for CANsync/CAN

K-CAN-T1-S (D-SUB 9-pin, male) Art. No. 313 910

K-CAN-T2-S (D-SUB 9-pin, female) Art. No. 313 911

K-CAN-RJ Art. No. 313 264

TYPE Length [m] Article Number

K-SS-01-03 3 213 846

K-SS-01-05 5 213 283

K-SS-01-15 15 231 086

TYPE Length [m] Article Number

K-CAN-33-0-0,5 0.5 324 497

K-CAN-33-0-01 1 324 498

K-CAN-33-0-02 2 324 499

K-CAN-33-0-03 3 324 500

K-CAN-33-0-04 4 324 501

K-CAN-33-0-05 5 324 502

K-CAN-33-0-10 10 324 503

TYPE Length [m] Article Number

K-CAN-13-0-0,5 0.5 324 504

K-CAN-13-0-01 1 324 505

K-CAN-13-0-02 2 324 506

K-CAN-13-0-03 3 324 507

K-CAN-13-0-04 4 324 508

K-CAN-13-0-05 5 324 509

K-CAN-13-0-10 10 324 510
Control Engineering �mega Drive-Line II 23
Baumüller Nürnber g GmbH 5.00005.02

Installation
Cable for Ethernet

Line type: K-ETH-33-xx (RJ male connector, RJ male connector, cable CAT5):

TYPE Length [m] Article Number

K-ETH-33-0-0,5 0.5 325 160

K-ETH-33-0-01 1 325 161

K-ETH-33-0-02 2 325 162

K-ETH-33-0-03 3 325 163

K-ETH-33-0-04 4 325 317

K-ETH-33-0-05 5 325 164

K-ETH-33-0-10 10 325 165
24 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
4 �MEGA DRIVE-LINE II AND PROPROG WT II

4.1 PROPROG wt II – an Efficient, Powerful and Comprehensive
Programming Tool

PROPROG wt II is a standard programming system that is based on the IEC 61131-3 standard.

The programming system provides powerful functions for the various development stages of PLC appli-
cations, like:

� editing

� compiling

� debugging

� printing

The PROPROG wt II programming system is based on modern 32-bit Windows technology and allows
users to operate the system easily using tools like zoom, scroll, special toolbars, drag & drop, a shortcut
manager and dockable windows.

In particular, the system makes possible processing of several configurations and resources within a pro-
ject as well as integration of project libraries. Apart from this, it has a powerful system for debugging.
Using the easy-to-use project tree editor, you can display and edit projects. This makes it possible to
represent easily and transparently the complex structure of the IEC 61131-3 standard. This feature al-
lows users to easily paste and edit in the project tree POUs, data types, libraries and configuration ele-
ments.

The PROPROG wt II programming system consists of a PLC-independent core for programming in the
various IEC programming languages: these include the text languages Structured Text (ST) and Instruc-
tion List (IL) as well as the graphic languages Function Block Diagram (FBD), Ladder Diagram (LD) and
Sequential Function Chart (SFC).

An editor wizard is available for programming in each of the languages, which allows you to quickly and
easily paste prepared keywords, statements, operators, functions and function blocks into the individual
work sheets. You can also use the editor wizard for declaring variables and data types. The independent
core of the system is complemented by special sections that are matched to various PLCs.

The new easy online handling and the 32-bit simulation allow you options for debugging the address sta-
tus and a real-time multitasking test environment.

An easy-to-use tool for project documentation allows you to print the project in a time-saving optimized
form (using less paper) with a page layout that can be specified by individual users.
Control Engineering �mega Drive-Line II 25
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
4.2 �mega Drive-Line II Project

You start a new �mega Drive-Line II project under PROPROG wt II by choosing menu item New pro-
ject. Using „Template for Omega_DLII“, you open an �mega Drive-Line II project. The �mega Drive-
Line II CPU in this project is the default setting in the configuration.

�mega Drive-Line II project template under „New project“
26 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
4.3 �mega Drive-Line II Configuration

As an IEC 61131-3 programming environment, you can use PROPROG wt II to program different target
systems (CPUs). It is also possible to program different target systems in one project. You generate a
program for the �mega Drive-Line II target system under „Physical Hardware“ using the �mega Drive-
Line II configuration.

Using the template, you open an �mega Drive-Line II configuration. Under its Properties, the �mega
Drive-Line II configuration has PLC type SH03_30.

A configuration consists of at least one resource. The resource contains the �mega Drive-Line II-spe-
cific data area, the communications source, the global variable worksheets and the tasks with the pro-
gram.

Setting under the „Physical Hardware“ property of an �mega Drive-Line II configuration.

Overview of the settings for inserting an �mega Drive-Line II target system within the physical hard-
ware:

Project template Configuration Resource

Omega_DLII SH03_30 Omega_DLII
Control Engineering �mega Drive-Line II 27
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
4.4 �mega Drive-Line II Resource

The resource contains the �mega Drive-Line II-specific settings for a program:

� Data area

� Communications source

� Global variable worksheets

� Various tasks using the program

� Documentation worksheets and I/O configuration
(The I/O configuration is already set correctly and you don’t have to change it.)

You can assign several resources to the �mega Drive-Line II configuration. This makes it possible to
implement a complete application with several drives in one project.

Example of an �mega Drive-Line II configuration with several resources.
28 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
4.4.1 Communication and Connection

You configure comm unication with data transfer under „Setting“ in the resource's context menu.

You set communication via the selected RS232 port as follows:

� Baud: 38400

� Stop bits: 1

� Data bits: 8

� Parity: None

� Timeout: Default is 2000 ms; communications monitoring during online representation.

The connection is established via X31 on the �mega Drive-Line II.

Resource setting within an �mega Drive-Line II configuration.

� „Index check on PLC“: The system checks the declared field size (index) of an ARRAY at runtime.
Important: this increases the code execution time!

� „S tack check on PLC“: The sys tem checks for a stack overrun a t runtim e. The stack m em ory is reser-
ved w ith the program task. There is an increase in the data on the s tack if you program nested FB in-
s tances , for exam ple. Im portan t: th is inc reases the code execution tim e!

� „Array boundary check on PLC“: With absolute addressing, the system checks whether the field vio-
lates the parameterized data area limits (retain, non retain). This check is carried out during compi-
lation on the PC. This does not increase the code execution time.
Control Engineering �mega Drive-Line II 29
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
� „Force BOOL8 for boolean variables“: Activate 8-bit access to Boolean variables. This setting must
be activated for the �mega Drive-Line II.

� „Generate bootproject during compile“: With this function activated, the system generates for each
resource a bootfile.pro at compiling of the project and not just at activation of the Send boot project
function via the resource control.

� „PDD": Settings for the process data directory. (See also the PROPROG wt II manual).

� „CSV": Settings for providing variables for the OPC server. (See also the PROPROG wt II pro-
gramming manual).

� „Use reserve“: Use spare memory to be able to make changes in the function blocks and functions
using the „Patch POU function“. (See also the PROPROG wt II programming manual).

You can make the resource setting separately for each �mega Drive-Line II resource. Serial or Ethernet
communications source

� COM1

� COM2

� COM3

� COM4

� DLL

is used

– for resource control.

– for sending the compiled project.

– for debugging.

– for connecting to the OPC server.

Communication via Ethernet (optional)

You optionally set communication via Ethernet (for application see “Ethernet” on page 71.) on the �me-
ga Drive-Line II socket X39 as follows:

� In Settings, you must choose DLL. In the DLL window, you can choose from the named saved IP
addresses or enter an IP address manually in the Parameters window (e.g. -ip 192.168.1.1 for the
default setting with DIP-switch = 0).

� To save IP addresses with their names, you must enter the IP addresses in the PROPROG wt II file
(\ProProgwt\PROPROG wt\) mwt.ini. For this, you must enter names under the country code, e.g.
English 001, German 049.
30 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
Example: mwt.ini with Ethernet address entries for selection via a synonym.

[COMMUNICATION]
DLL001=plc\socomm.dll -ip 127.0.0.1 -TO2000
DLL003=plc\socomm.dll -ip 192.075.191.183 -TO2000
DLL002=plc\socomm.dll -ip 192.075.191.184 -TO2000
DLL004=plc\socomm.dll -ip 192.075.191.185 -TO2000

[COMMUNICATION001]
NAME001=TCP/IP
NAME002=TCP/IP DLII-Address 1
NAME003=TCP/IP DLII-Address 2
NAME004=TCP/IP DLII-Address 3

[COMMUNICATION049]
NAME001=TCP/IP
NAME002=TCP/IP DLII-Adresse 1
NAME003=TCP/IP DLII-Adresse 2
NAME004=TCP/IP DLII-Adresse 3

Setting a DLL for communication via Ethernet with address via a synonym or manual input.
Control Engineering �mega Drive-Line II 31
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
4.4.2 Control Dialog for Resources

Using the control dialog for resources, you set program transfer to the �mega Drive-Line II and the ope-
rating status of the �mega Drive-Line II.

If several resources are active in a project, you must choose the desired resource.

After you choose the resource, the system displays the control dialog for the resource
of the assigned �mega Drive-Line II.

Functions of the control dialog of the selected resource in the "RUN" status.

Clicking on „Download“ transfers the compiled project to the target system.
32 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
Downloading the project to the target system.

Transferring �mega Drive-Line II resource to flash memory or RAM.

Clicking on „Download Bootproject“ , deletes the resource's current bootproject, sends the compiled
project as a boot project and saves it in the �mega Drive-Line II's flash memory. Clicking on Activate,
loads the project from the �mega Drive-Line II's flash memory to RAM.

Clicking on „Delete on Target“ , deletes the bootproject in flash memory.

Clicking on „Download Project“ , transmits the resource's compiled project. The bootproject stays
unchanged in the �mega Drive-Line II's flash memory. After the next hardware reset or the next time
you switch the controller off and on again, the bootproject is active again!

The system does not currently support menu items „Download Source“,
„Download File“ and the „Include OPC data“ attribute and you mustn’t select
these items.

NOTE
Control Engineering �mega Drive-Line II 33
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
After clicking on Dowloand Project, you can start the project on the �mega Drive-Line II.
If a boot project is sent, you can use Download and Activate Bootproject to load the project in the
�mega Drive-Line II and then start it:

The �mega Drive-Line II resource control in the "STOP" status.

� Stop: Stops execution of the program.

� Reset: Deletes the project on the �mega Drive-Line II (not the boot project!)

� Download: Calls program transfer.

� Cold boot: The system carries out the system task cold boot with all the variables being initialized
with their default values. If a new project is sent, the system carries out a cold boot once when the
hardware switch is set to "RUN". At the same time, retain variables are set to their initialization valu-
es.

� Warm boot: The system carries out the system task warm boot with the hardware switch set to RUN.
The global retain variables retain their last values. This is only possible when the hardware switch is
set to "RUN".

If you set the hardware switch from STOP to RUN after a „Download Pro-
ject", the system carries out a cold boot once. Every other time that you
change from STOP to RUN, the system carries out a warm boot.

� Hot boot: The system does not run through an initialization task, i.e. neither a cold boot nor a warm
one, but rather executes the cyclical project directly.

� Error: Here, you can read out error and warning messages that are pending on the controller if the
pushbutton is activated. The button is activated if the system generates a runtime error message.
Clicking on the active error pushbutton inquires the controller's error entries and displays them in the
error or warning message window.

� Upload: Upload function: is not currently supported.

� Info: Information about the OmegaOS version, the firmware number, the used memory configuration
and the internal system status conditions of the controller.

NOTE
34 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
Under „Info“, the control dialog for the resource provides general information about the project on the
�mega Drive-Line II. The following content is shown:

� „Version PLC“ with the version of the �mega Drive-Line II runtime system.

� „Version Firmware“ with the version of the �mega Drive-Line II firmware for the firmware library.

� „Project" with the name of the active project.

� Operating and error status as well as the active debug mode, breakpoints, forces.

� Total storage area of retain data.

� Free program memory.

� Free memory for system data runtime system (for loading, oscilloscope function).

� CPU loading, e.g. to check loop repetitions in a parameterized task time.

� Update time of the online representation in debug online mode.

�mega Drive-Line II resource information.
Control Engineering �mega Drive-Line II 35
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
4.4.3 The �mega Drive-Line II Board Seven-Segment Display

You can execute the Start/Stop functions either using the resource's control dialog of the
PROPROG wt II or by means of the RUN/STOP switch. If you intend to carry out a start using
PROPROG wt II, you must set the RUN/STOP switch to the "RUN" position.

The RUN/STOP switch on the �mega Drive-Line II board has the following switching positions:

Pushbutton/switching
position

Status Seven-Segment Display

Bottom (pushbutton) RESET Not lit while you keep pres-
sing the pushbutton. When
you release the pushbutton it
automatically changes to the
STOP middle position.

Middle (switch) STOP

Without project 0

With project 1

Top (switch) RUN

(Control of PROPROG wt II resource manager active)

No project on the controller. 0

Using the resource's control dialog, a Stop
was carried out or a new project was activa-
ted.

1

The system runs through initialization.
(Cold or warm boot)

2

Initialization phase is completed; the
system is currently executing the cyclical
program sections.

3

The system is currently deleting the boot
project on the controller.

C

The system is currently copying a new boot
project into flash memory.

L. < ---- > L

The system has completed copying a new
boot project into flash memory. You can
now activate the boot project.

A

36 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
4.4.4 Data Area

The data area contains the �mega Drive-Line II-specific setting of the physical address range.

The data area is divided into non retain flags and retain flags. A system area is located in both areas.
In the system area, the system assigns the addresses of the symbolic program variables via the compi-
ler.

Users can assign absolute addresses in both the non retain and retain user areas.

Apart from this, there is an �mega Drive-Line II-specific area for interfaces, e.g. option interfaces (see
“The Base Addresses of the Option Interfaces” on page 56.).

The reserve is for the send Online Changes compiler functionality and reserves program memory.

Resource �mega Drive-Line II-specific data range without a retain flag user area.
Control Engineering �mega Drive-Line II 37
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
The �mega Drive-Line II data range is divided into retain and non retain data areas. You must set the
area of the absolute addresses project-dependently.

The standard user area for assigning absolute addresses within an �mega Drive-Line II resource in the
non retain area is:

� %MB 0 - %MB 79999

The standard user area for assigning absolute addresses within an �mega Drive-Line II resource in the
retain area is:

� %MB 10000000 - %MB 10019999

Breakdown and setting of the �mega Drive-Line II data range.

Assigning addresses in the program:

An absolute �mega Drive-Line II address or a variable field with data type

� 16-bit (WORD) can only be assigned for an address that can only be divided without remainder by
two and zero.

� 32-bit (DWORD) can only be assigned for an address that can only be divided without remainder by
four and zero.

Example:

You want to declare a variable of data type DWORD in the non retain data range.

dw_abs AT %MD12 : DWORD; (* symbolic variable to absolute
address *)
38 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
4.4.5 The ����mega Drive-Line II Event Tasks

The �mega Dreference valuerive-Line II event tasks are for event-driven calling of the program. Their
type and code runtime determine the real-time response.

Implementation of the real-time response depends on the type of reference value setting and the V-con-
troller's operating mode. Reference value setting can, for example, be implemented as follows:

� In a standalone drive via a BAPS event task.

� In a networked drive via a CANsync event task.

The property of the event task is assigned via its event number:

The events of the �mega Drive-Line II event tasks.

Property ����mega Drive-Line II event ����mega Drive-Line II interrupt
level

Event 0 CPU timer 1 Level 14

Event 1 Reserved

Event 2 CPU timer 2 Level 13

Event 3 Reserved

Event 4 BAPS process data Level 13

Event 5 Timer A Level 14

Event 6 Timer A Level 13

Event 7 Reserved

Event 8 BAPS process data Level 14

Events 9, 10 Reserved

Event 11 SYNC signal option board Level 14

Event 12 SYNC signal network (CANsync) Level 14
Control Engineering �mega Drive-Line II 39
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
All the �mega Drive-Line II event tasks depend on the resource and need
the Bypass attribute. The initialization FBs within the program initialize and
call the declared event task and their priorities. This means that with bypass
event tasks, the priority, watchdog time, "SAVE FPU" and "NO SUSPEND"
are meaningless.
A higher interrupt level means a higher priority.
In the case of several event tasks that can mutually interrupt one another or
with multiple-nested function blocks, you should adapt the stack to Large or
XLarge.

NOTE
40 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
4.5 �mega Drive-Line II User Libraries

The PROPROG wt II user libraries are divided into firmware and user libraries that can be hardware-de-
pendent or hardware-independent. You can only use hardware-dependent libraries in resources of the
specified target system. The hardware dependence of �mega Drive-Line II libraries is indicated by
DLII in the library designation.

All �mega Drive-Line II user libraries start with Version 2.0 Build 0. The version is stated as follows:
20bd00.

� 20 is the incompatible version.

� 00 is the compatible version.

In the case of compatibility of the input and output variables of the function blocks, the version is incre-
mented by one, e.g. 20bd01, 20bd02, etc. if you add the library to an FB, e.g. an input or output, the
version before the "bd" is incremented by one and set to zero after the "bd", e.g. 20bd03 to 21bd00.

The user libraries are divided into:

Overview of ����mega Drive-Line II libraries under PROPROG wt II (subject to change):

Data types:

BM_TYPES_20bd00 assembled data types and fields.

�mega Drive-Line II system FBs:

SYSTEM1_DLII_20bd00 BAPS and serial communication, trigger signal interconnection, code
runtime measurement.

�mega Drive-Line II firmware:

SYSTEM2_DLII_20bd00 The entire �mega Drive-Line II firmware.

Local control engineering:

UNIVERSAL_20bd00 Hardware-independent FBs like controllers or reference value genera-
tors.

IEI-02 option board (optional):

IEI_DLII_20bd00 IEI-02 initialization.

Asynchronous CAN bus with CAN-M-01 option board (optional):

CAN_DLII_20bd00 FBs for a CAN bus link with CAN-M-01 option board.

� Firmware: �mega Drive-Line II board functionality, e.g. starting a
PROPROG wt II bypass event task

� Data types: �mega Drive-Line II-specifically assembled data types and fields,
e.g. register structure of option boards

� Standard FBs: Elementary FBs for local control engineering

� Technology components: Completely deployable drive functionality.
Control Engineering �mega Drive-Line II 41
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
CANsync synchronous bus system:

CANsync_DLII_20bd00 FBs for a CANsync bus link.

Technology components (optional):

WINDER_DLII_20bd00 winder.

CAM_DLII_20bd00 cam disk.

REGISTER_DLII_20bd00 register controller.

You must state the directory path for libraries under PROPROG wt II, Options, Directories. The �mega
Drive-Line II libraries are inserted in the PROPROG wt II project tree under libraries.

You can call HTML help for each FB that gives you a description of the inputs and outputs (see the
PROPROG wt II Manual).

4.5.1 ����mega Drive-Line II Firmware

The �mega Drive-Line II firmware consists of function blocks (FBs) that communicate with functions on
the �mega Drive-Line II-CPU via transfer parameters. You can only use these FBs in a resource-de-
pendent way, i.e. in dependence on the target system.

You must insert the �mega Drive-Line II firmware in a project with the library

SYSTEM2_DLII_20bd00 (or above)

The library contains the following range of functions:

– Start bypass event task, and freely programmable LEDs on the �mega Drive-Line II.

– P, PI controller, 48-bit division via electronic transmission, integration, differentiation.

– Function blocks for interface module to USS® and 3964R® protocols.

The �mega Drive-Line II firmware is used by several �mega Drive-Line II
user libraries. This means that with an �mega Drive-Line II user library, it
may be necessary to insert the requested firmware library
SYSTEM2_DLII_20bd00 or above (See description of the user library).
To be able to use the basic functionality, you should always insert firmware
SYSTEM2_DLII_20bd00 (or above) in an �mega Drive-Line II project in
addition to user library SYSTEM1_DLII_20bd00 (or above).

NOTE
42 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
4.5.2 The ����mega Drive-Line II Board Functions

Firmware library SYSTEM2_DLII_20bd00 (or above) contains function blocks (FBs) for checking event
signals for interrupts and board LEDs. Function block INTR_SET is used to initialize and start �mega
Drive-Line II event tasks (bypass). Function block LED is used to allow the use of freely programmable
LEDs.

Two FBs for code runtime measurement are provide to optimize code runtimes within �mega Drive-
Line II resources. The FBs are inserted via user library SYSTEM1_DLII_20bd00 and above.

You must limit the code block within a task that is to be measured by placing FBs
TIME_MEASURE_START and TIME_MEASURE_END. The system outputs the result of the measured
code block's runtime at FB TIME_MEASURE_END as a time difference in µs (see also online description
of FBs TIME_MEASURE_START and TIME_MEASURE_END).

Function block INTR_SET

Function block INTR_SET starts a bypass event task in a start-up task .

You must set the PROPROG wt II event task with the program to the event and to the Bypass attribute.

Initializing and enabling a bypass event task via function block INTR_SET.

Parameter Input Value range

i_EVENT Interrupt hardware program number 8-bit signed

i_MODE Reserve 16-bit signed

i_PAR1 CPU timer (1,2) value multiplier to base 50µs 16-bit signed

i_PAR2 Reserve 16-bit signed

x_EN Block/enable the interrupt 1-bit
Control Engineering �mega Drive-Line II 43
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
Description

Using FB INTR_SET, users can configure and activate various system-internal interrupt sources. You
can then use these interrupts in the program to activate event tasks.

An event number must be connected at input i_EVENT. This number specifies the interrupt source of
the event task. If the interrupt source in question is a CPU timer interrupt, you must additionally state a
factor to the time base 50 µs at input i_PAR1.

You can use x_EN = FALSE to disable a previously activated interrupt.

List of event numbers for event tasks:

The event number at input i_Event must be identical with the setting of the event task within the resource.
The Bypass attribute must be activated.

A higher-priority interrupt interrupts a lower-priority one. For events 0 and 2,
CPU timer 1 (or 2) interrupt, you must additionally state at input i_PAR1 the
factor for time base 50 µs.
You cannot use events SYNC signal option board (11) and SYNC signal
network (CANsync, 12) at the same time. You cannot use at the same time
the BAPS process data low priority (4) and BAPS process data high priority
(8).

Parameter Output Value range

x_ERR Error bit 1-bit

i_EVENT Hardware event(s) Interrupt level

0 CPU timer 1 Level 14

2 CPU timer 2 Level 13

4 BAPS process data Level 13

5 Board timer A Level 14

6 Board timer A Level 13

8 BAPS process data Level 14

11 SYNC signal option board Level 14

12 SYNC signal network (CANsync) Level 14

NOTE
44 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
Example 1:

Starting a CPU timer interrupt with a time of 1 ms.

Implementation:

First of all, you set up the event task within the �mega Drive-Line II resource with event number 0, or
CPU timer 1.

FB INTR_SET is implemented within a start-up task. Assignment of inputs/outputs looks like this:

Interrupt time = i_PAR1 • 50 µs

Function block INTR_SET: Starting a CPU timer 1 interrupt with an interrupt time of 1 ms.
Control Engineering �mega Drive-Line II 45
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
Example 2:

Starting a board timer A interrupt with a time of 1 ms.

By contrast with the CPU timer 1 (or 2), you can also use board timer A as a trigger signal for modules
that need trigger signals, since it is only possible with board timer A to issue an interrupt as well as a
trigger.

First of all, you set up the event task within the �mega Drive-Line II resource with event number 5 (or
6), or event board-timer A.

Within a start-up task, FB OPT-INIT is implemented first and then FB INTR_SET.

Interrupt time 1 ms = frequency divider for timer A set up at FB OPT-INIT

1 ms = ((2499 + 1) • 2) / 5 MHz set up at FB OPT-INIT

Interrupt = event board timer A state at FB INT_SET

Starting a board timer A event task with a time of 1 ms and simultaneous use as a trigger signal for
modules that need trigger signals within a start-up task.
46 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
Function block LED

Using function block LED from firmware library SYSTEM2_DLII_20bd00 (or above), you can program
the �mega Drive-Line II LEDs on the board.

Description

The left-hand LEDs on the �mega Drive-Line II board light up red, the right-hand ones light up green.
Bits 0-3 of the 8-bit pattern are output to the four LEDs as follows:

Parameter Input Value range

b_LEDS LED set screen form 8-bit

Red LEDs Green LEDs

⊗ ⊗
Bit 0 Bit 1

⊗ ⊗
Bit 2 Bit 3
Control Engineering �mega Drive-Line II 47
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
4.5.3 Die ����mega Drive-Line II Data Types

Frequently, �mega Drive-Line II user libraries need assembled data types in the input and output as-
signment of their function blocks (FBs). The data types are stored in user library

� BM_TYPES_20bd00 (or above).

User library BM_TYPES_20bd00 (or above) makes available the data types to allow you to use the
�mega Drive-Line II user function blocks and the firmware blocks. �mega Drive-Line II user function
blocks and firmware blocks use these data types to map register structures of option boards or to pass
on initialization value on a cross-task basis.

To be able to use standard libraries and technology components, you must insert BM_TYPES_20bd00
(or above) in your project. You cannot call the worksheet of BM_TYPES_20bd00. The data types are
available in the variable dialog under Properties of assignment. The data types of BM_TYPES_20bd00
are marked "_BM".

In their descriptions, the standard libraries and technology components refer to the data types of
BM_TYPES_20bd00 (or above). When implementing FBs from these libraries, you must declare varia-
bles of these data types and possibly connect them to an address, e.g. an option interface.

Example:

For initialization, option board IEI-02 needs settings in various registers. The complete register structure
with its data width and its elements are stored in BM_TYPES_20bd00. With the IEI-02 in option slot 1,
this yields the following variable declaration.

_IEI_write_register AT %MD3.1000000 : IEI_WRITE_BMSTRUCT;

The elements of variable _IEI_write_register now map the registers of the option board. You can
symbolically program the registers via the elements of the variable (see technical description of option
board IEI-02 for �mega Drive-Line II).

In the variable dialog, the system makes available the data types for assign-
ment in a selection dialog. In this connection, the data types of library
BM_TYPES_20bd00 (or above) are indicated by the abbreviation "_BM"
(_BMARRAY, _BMSTRUCT, etc.) The worksheet of the library is write-pro-
tected and you cannot view it.

NOTE
48 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
4.5.4 The Standard Function Block Libraries

The standard libraries contain function blocks (FBs) with the basic functionality for local programming
and configuration of the real-time response.

These function blocks are located in:

� SYSTEM1_DLII_20bd00 (or above)

BAPS communication

Trigger signal interconnection of FB OPT-INIT

Code runtime measurement

3964R® protocol interface module

USS® protocol interface module

� SYSTEM2_DLII_20bd00 (or above)

�mega Drive-Line II firmware:

� UNIVERSAL_20bd00 or above (regardless of the hardware)

Drive status and control via FB DRIVE1

Extrapolators, ramp generators, position generators, Min-Max and limitation FBs

Virtual leading axle FB TRAJECTORY_GEN1.

4.5.5 The ����mega Drive-Line II Technology Components

You can extend the standard user libraries by adding complete drive functionality, i.e. the technology
components. These are:

The technology components offer drive functionality that provide a large number of application solutions
due to interconnection and multiple instantiation.

For integration, all the user libraries of the technology components need
data types BM_TYPES_20bd00 and above.

� The cam disk technology component: User library CAM_DLII_20bd00 (or above)

� Register controller technology compo-
nent:

User library REGISTER_DLII_20bd00 (or above)

� The winder technology component: User library WINDER_DLII_20bd00 (or above)

NOTE
Control Engineering �mega Drive-Line II 49
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
4.5.6 Inserting a User Library into a Project

You insert user libraries in PROPROG wt II in the project tree under libraries. If the library in question is
firmware, you must set .fwl when choosing the file format.

Standard selection of user libraries, firmware and data types using the libraries filter
50 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
A PROPROG wt II library is supplied in compressed form (as a ZWT file).
You must unpack the ZWT file under PROPROG wt II. When unpacking the
file, the system automatically stores the write-protected library in the speci-
fied PROPROG wt II library path (Tools > options menu) and displays an
untitled project that you should close without saving it.

The system unpacks the firmware libraries to the firmware library directory
of PROPROG wt II.

NOTE
Control Engineering �mega Drive-Line II 51
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
4.6 �mega Drive-Line II Option Interfaces, Interrupt Sources and Trigger
Signals

4.6.1 The Interrupt Sources and Trigger Signals

In �mega Drive-Line II, modules, timers and option boards can be interrupt sources and trigger event-
driven tasks. The necessary program interrupts are application-dependent. For the system to be able to
process the input and output values of all the �mega Drive-Line II components in a real-time-capable
way, all of the component values that are used in the set event task must be synchronized with it. This
is carried out by a trigger signal, that the module either supplies or needs.

Modules that need trigger signals are:

� Trigger 1: IEI-02 incremental encoder board for latching the position actual values of incremental
encoders.

� Trigger 2: MFM-01 digital/analog input and output board for starting analog/digital conversion.

� Trigger Controller: V-controller for synchronizing the control time slices.

Clock signals that modules make available:

� Basic 5 MHz cycle: Cycle for frequency dividers or board timers

Interrupt signals that modules make available:

� Interrupt Option 1: Interrupt of an option board

� Interrupt Option 2: Interrupt of an option board

� Interrupt Net: Reserved

� Interrupt timer A: Timer A interrupt

� Interrupt timer B: Reserved

Synchronization signals that modules make available:

� Sync Net: SYNC signal of CANsync.

� Sync Option: SYNC signal of the option board.

The �mega Drive-Line II offers the option of switching trigger signals, SYNC signals and interrupt si-
gnals to modules that need trigger signals (function block OPT_INIT).
52 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
Overview of modules and trigger signals

4.6.2 Trigger Signal Interconnection and Timer Configuration via Function
Block OPT_INIT

You must interconnect the modules that need trigger signals via function block (FB) OPT_INIT. The FB
is integrated into the project via library SYSTEM1_DLII_20bd00 (or above). Modules that need trigger
signals are:

� Trigger 1: IEI-02: for latching the position actual values on the option board.

� Trigger 2: MFM-01: for starting analog/digital conversion on the option board.

� Trigger Controller: V-controller: for synchronizing the control time slices on the V-controller.

If a trigger signal is not needed, the interconnection can stay open. You can use the trigger signals, in-
terrupt signals or SYNC signals that other modules make available as the source of the trigger signals
to be interconnected.
Control Engineering �mega Drive-Line II 53
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
Necessary Trigger 1 for the IEI-02 option board in option slot 1 or 2:

Necessary Trigger 2 for the MFM-01 option board in option slot 1 or 2:

Necessary trigger controller (V-controller BAPS):

The OPT-INIT �mega Drive-Line II function block is used for two tasks:

1. switching trigger signals for modules need the trigger signals to make available data from the modu-
les on an interrupt call.

2. Specify the time interval of board timer A and start:
time interval = [(divisor +1) • 2] / clock signal frequency

Example: 1 ms = ((2499 + 1) • 2) / 5 MHz (basic cycle of 5 MHz as the clock signal)

You can set timers A and B to a fixed frequency and start them separately. Timer A can be used as an
event for bypass event tasks.

Mode for Trigger 1 Synchronization/triggering using Source

0 Reserved Reserved

1 Reserved Reserved

2 SYNC signal from the option board Sync Option

3 CANsync synchronization signal Sync Net

4 Board timer A via OPT_INIT Interrupt timer A

5 Reserved Interrupt timer B

6 Interrupt of an option board Interrupt option 1

Mode for Trigger 2 Synchronization/triggering using Source

0 Reserved Reserved

1 Reserved Reserved

2 SYNC signal from the option board Sync Option

3 CANsync synchronization signal Sync Net

4 Board timer A via OPT_INIT Interrupt timer A

5 Reserved Interrupt timer B

6 Interrupt of an option board Interrupt option 1

Mode for Trigger Controller Synchronization using Source

0 SYNC signal from the option board Sync Option

1 CANsync synchronization signal Sync Net

2 Board timer A via OPT_INIT Interrupt timer A

3 Reserved Interrupt timer B

4 Interrupt of an option board Interrupt option 1

5 Interrupt of an option board Interrupt option 2
54 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
If you insert in PROPROG wt II a task of type event and set the Bypass at-
tribute, you can start an interrupt from a start-up task via function block
INTR_SET (firmware SYSTEM2_DLII_20bd00 or above). This is conditional
on the event task in the IEC 61131-3 resource being set to the event.

4.6.3 Using Function Block OPT_INIT

You place function block (FB) OPT_INIT in the initialization tasks (cold boot, warm boot tasks) or in a
cyclical task with the FB only being allowed to be run through once.

The call can be made for assignment of a needed trigger signal (e.g. IEI-02, MFM-01, V-controller) after
initialization of the module.

When setting up a board timer (A, B) via frequency divider and synchronization to a clock signal (e.g. 5-
MHz basic cycle), you must set up division as follows:

Time interval = [(divisor +1) • 2] / clock signal frequency

Example: FB OPT_INIT used in the initialization section of a CANsync slave-project for triggering the
used option boards and the V-controller.

� You must integrate into the program FB OPT_INIT from library SYSTEM1_DLII_20bd00 (or above).
You must switch the mode for modules that need the trigger signals to Sync Net (CANsync). Refer
to the FB's online help for the mode.

� The system runs through FB OPT_INIT once and saves the configuration that was created at the
inputs to the elements in the configuration structure (input/output variable _MODE_REGISTER).

�mega Drive-Line II used with CANsync slave event task and triggering of IEI-02, MFM-01 and the V-controller
using the SYNC signal from the CANsync bus.

NOTE
Control Engineering �mega Drive-Line II 55
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
4.6.4 The Base Addresses of the Option Interfaces

Base addresses are assigned to option interfaces 1-3. The registers of the option board are offset
addresses to this base address in accordance with their data type widths.

�mega Drive-Line II access in PROPROG wt II: assigned hardware address
Start to end

Option interface 1: %MB 3.1000000 - %MB3.1262143 16#B4000000 - 16#B403FFFF
in option slot 1.

Option interface 2: %MB 3.2000000 - %MB3.2262143 16#B4040000 - 16#B407FFFF
in option slot 2.

Option interface 3: %MB 3.3000000 - %MB3.3262143 16#B4080000 - 16#B40AFFFF
(communications boards) in option slot 2.

To allow you to access registers of the option boards in a PROPROG wt II
project, data types are defined that map the register structure. The system
uses these data types to declare variables that are assigned to the address
of the option interface that is used. This makes it possible to access the re-
gister structure of the option board via the elements of the declared varia-
bles. For further explanations on the register structure and function, refer to
the technical description of the respective option board.

4.6.5 Controller-Specific Mapping of the Hardware Areas

The following Mapping of Hardware addresses (base addresses) is implemented in the �mega Drive-
Line II for PROPROG wt II for BAPS, CANsync and Ethernet communication:

Structures are assigned to the address ranges. If necessary, you should refer to the corresponding do-
cumentation for the libraries to get information about the use of the structures.

BAPS:

The V-controller interface BAPS to the communication RAM of the BAPS is implemented using:

� BAPS_CTRL_BMSTRUCT (defined in library BM_TYPES_20bd00 or above).

NOTE

Designation Access in PROPROG wt II
Start - end

Assigned hardware address

DPRAM BAPS %MB3.80000 - %MB3.88191 16#B4140000 - 16#B4141FFF

CANsync node 1 %MB3.100000 - %MB3.132767 16#B4142000 - 16#B4149FFF

Ethernet configuration %MB3.180016 - %MB3.180031 16#B0000010 - 16#B000001F

CANsync node 2 %MB3.200000 - %MB3.232767 16#B414A000 - 16#B4151FFF

Ethernet %MB3.300000 - %MB3.357343 16#B4152000 - 16#B415FFFF
56 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
CANsync:

Communication for a CANsync slave is implemented using CANsync node 1. Communication for a CAN-
sync master is implemented using CANsync node 2. The following structures are defined for this in libra-
ry BM_TYPES_20bd00 (or above):

� CANsync_INIT_BMSTRUCT

� CANsync_MA_CTRL_BMSTRUCT

� CANsync_SL_CTRL_BMSTRUCT

CAN:

Using option interface 3, you can implement CAN communication: The following structures are defined
for this in library BM_TYPES_20bd00 (or above):

� CAN_INIT_BMSTRUCT

� CAN_CTRL_BMSTRUCT

Ethernet:

For Ethernet configuration by users, e.g. Ethernet IP addresses and Ethernet IP mask, you can use the
following structure in library BM_TYPES_20bd00 (or above):

� ETHERNET_CONFIG_BMSTRUCT (AT %MB3.180016)

The Ethernet configuration area is in the buffered NOVRAM area)

For Ethernet diagnostics, you can use the following structure from library BM_TYPES_20bd00 (or abo-
ve):

� ETHERNET_DIAGNOSE_BMSTRUCT (AT %MB3.300000)

4.6.6 Sample Configurations

Depending on the option boards that you are using and on the synchronization requirements, you need
different configurations for BAPS communication, the trigger signals and the interrupt sources.

You can use the following examples for the majority of applications:

Example A:

Implementing BAPS process data communication within a BAPS event task. BAPS process data
communication is synchronized by the BAPS process data event from the V-controller.

In this case, it is not possible to synchronize an option board via the trigger
signals.

NOTE
Control Engineering �mega Drive-Line II 57
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
Example B:

Implementing high-precision BAPS process data communication within a timer event task (board
timer A) and triggering MFM-01, IEI-02 and the V-controller via this timer.

Example C:

Implementing BAPS process data communication within a CANsync event task and triggering the V-
controller, MFM-01 and IEI-02 via the synchronization signal of CANsync.

To transfer data via the 3964R® protocol or the USS® protocol, you need a timer event task.

Example D:

Implementing a timer event task for cyclical serial communication. The function blocks for cyclical
communication are placed in a POU that is assigned to this task. If you need option board control
signals, you can set them up.

Code runtime measurement is recommended for optimizing the run times of
process data.
You can carry out this measurement using FBs TIME_MEASURE_START
and TIME_MEASURE_END from library SYSTEM1_DLII_20bd00 (or abo-
ve).

NOTE
58 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
4.6.7 Implementing a BAPS in a BAPS Event Task

Example A:

The �mega Drive-Line II generates target values in a V-controller event task with BAPS process data
communication to the V-controller. The event for the task comes from the V-controller. It is not possible
to trigger option boards directly to the BAPS event.

BAPS process data communication is carried out directly in an event task using BAPS process data
event 4 or 8 (V-controller). The BAPS process data communication event task is initialized and started
via FB BAPS_INIT (see “BAPS_INIT” on page 82.). For this, FB BAPS_INIT is placed in a POU that is
assigned to a cyclical task. In this connection, you must ensure that the FB is only enabled after five pro-
gram cycles and that it is run through only once.

� The system initializes the BAPS to the desired time slice and parameter in a cyclical task via FB
BAPS_INIT. Firmware block INTR_SET is a component of FB BAPS_INIT.

� For process data communication via FB BAPS_PD_COMM, you insert in the resource a bypass
event task with event 4 or 8.

Time slice synchronization corresponds to the following drawing.

Bypass event task in the �mega Drive-Line II to BAPS event from the V-controller

You can synchronize conversion of the MFM-01 values in „Change by wri-
ting mode“ within the BAPS event task.

NOTE
Control Engineering �mega Drive-Line II 59
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
In the V-controller's „Synchronous operation with synchronous reference value specification“ mode, at
BAPS process data communication via parameter P258 (32-bit angle) you must mask (set FALSE) the
lowest bits of the transfer value in dependence on the selected BAPS time slice:

BAPS process data communication in

� 500 µs event task: bit 0

� 1 ms event task: bits 1, 0

� 2 ms event task: bits 2, 1, 0

� 4 ms event task: bits 3, 2, 1, 0

4.6.8 Implementing a high-precision BAPS in a timer event task

Example B:

The �mega Drive-Line II generates the target values that are transferred in an event task with BAPS
process data communication to the V-controller and needs synchronized triggered option boards, e.g.
cam disk with register controller application.

The interrupt signal and the trigger signal for modules that need trigger signals must be identical. This
implementation is only possible with board timer A. BAPS process data communication is carried out in
event task board timer A, i.e. event board timer A is set to the time slice of the necessary BAPS process
data communication.

� The trigger signal is interconnected and the event task on board timer A is started in a start-up task.
FB OPT-INIT configures board timer A's time to the desired BAPS time slice, e.g. 1 ms.

Start the necessary event board timer A with frequency divider to 5-MHz basic cycle:

Necessary Trigger 1 for the EI-02 option board in option slot 1 or 2:

Necessary Trigger 2 for the MFM-01 option board in option slot 1 or 2:

Necessary Trigger Controller (V-controller BAPS):

u_DIVIDER_TIMER_A x_EN_TIMER_A ud_CFG_MODE_TIMER_A

2499 TRUE 0

1 ms = [(2499 +1) • 2] / 5 MHz Timer A started 5 MHz basic cycle

Mode for Trigger 1 Synchronization/triggering using Source

4 Board timer A via OPT_INIT Interrupt timer A

Mode for Trigger 2 Synchronization/triggering using Source

4 Board timer A via OPT_INIT Interrupt timer A

Mode for Trigger Controller Synchronization using Source

2 Board timer A via OPT_INIT Interrupt timer A
60 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
FB OPT_INIT for starting board timer A and trigger signal interconnection in a start-up task.

� In accordance with FB OPT-INIT, the following are inserted in FB INR_SET:

i_MODE, i_PAR1, i_PAR2 are not interconnected.

FB INTR_SET for starting a bypass event task on board timer A in a start-up task.

� You must insert in the �mega Drive-Line II resource an event task to event board timer A. First
you insert in the task the evaluation of the (IEI-02/MFM-01) option boards and the BAPS process
data communication. After this the system carries out reference value generation.

� In the V-controller, you match reference value synchronization via WinBASS on the service user in-
terface: SyncSlotzeit (P167) is set to the board timer A time and parameter SyncOffset (P168) is
set in accordance with the explanation in the drawing.

i_EVENT Hardware event(s) Interrupt level

5 Board timer A Level 14
Control Engineering �mega Drive-Line II 61
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
In the V-controller's „Synchronous operation mit synchronous reference va-
lue specification“ mode, at BAPS process data communication via parame-
ter P258 (32-bit angle) you must mask (set FALSE) the lowest bits of the
transfer value in dependence on the selected BAPS time slice:

BAPS process data communication in

� 500 µs event task: bit 0

� 1 ms event task: bits 1, 0

� 2 ms event task: bits 2, 1, 0

� 4 ms event task: bits 3, 2, 1, 0

Process data communication to the V-controller in board timer A event task and triggering modules to board timer
A event.

The SyncOffset is for optimizing the run time until the position reference value is applied in the V-con-
troller. If it is adequate for the value to be applied in the next cycle �, you must set the SyncOffset to

NOTE
62 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
ZERO. Otherwise, you must measure the code runtime, including BAPS process data communication,
and parameterize it as the SyncOffset in the V-controller. Then, the system applies the value in point �.

In this connection, you should note that the values that are not transferred via the BAPS until the second
value application do not become effective in point �, but rather in point �.

In the V-controller, all the parameters, except for the position reference values, become effective directly
after value application.

4.6.9 Implementing a BAPS within the CANsync synchronous bus system

Example C:

The �mega Drive-Line II is part of the CANsync synchronous bus system (master or slave). In this case,
process data communication via CANsync and BAPS process data communication to the V-controller
must be carried out in one task.

The event for the task is the synchronization signal from the CANsync bus. The �mega Drive-Line II
resource must have a bypass event task with event CANsync (12). You insert BAPS process data com-
munication in this bypass event task.

The V-controller and option board modules that need trigger signals are also triggered using the syn-
chronization signal from the CANsync bus.

� The bypass event task is inserted in the �mega Drive-Line II resource with event CANsync (12).

� You use WinBASS to parameterize the V-controller's operating mode to synchronous operation
with synchronous reference value setting. You must set parameter SyncSlot (P167) to the CAN-
sync time slice. The SyncOffset (P168) is zero.

� To implement BAPS process data communication within the CANsync event task and CANsync pro-
cess data communication, you must insert the following �mega Drive-Line II libraries:

– BM_TYPES_20bd00 or above: data types for CANsync and BAPS.

– SYSTEM1_DLII_20bd00 or above: BAPS-FBs and FB OPT_INIT.

– SYSTEM2_DLII_20bd00 or above: FB INTR_SET for the CANsync library.

– CANsync_DLII_20bd00 or above: initialize CANsync event task and bus link.
Control Engineering �mega Drive-Line II 63
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
Libraries for implementing a BAPS time slice synchronously with CANsync process data communication

You implement CANsync process data and requirements data communication using the FBs of the libra-
ries. FB CANsync_INIT starts the CANsync bypass event task. After this, FB BAPS_INIT initializes
BAPS process data communication.

For information on the deployment of the function blocks for CANsync and BAPS implementation, refer
to the respective module description. Implementation should yield the following task and program struc-
ture.
64 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
Basic structure of a resource with CANsync bus link and BAPS process data communication.

You insert into this basic structure the program POUs of reference value setting to the BAPS. Initializa-
tion of the CANsync interface module and the BAPS is completed by interconnecting via FB OPT_INIT
the trigger signals for modules that need trigger signals.

All the modules are triggered using the synchronization signal of CANsync.

Necessary Trigger 1 for the EI-02 option board in option slot 1 or 2

Necessary Trigger 2 for the MFM-01 option board in option slot 1 or 2

Necessary Trigger Controller (V-controller BAPS)

Mode for Trigger 1 Synchronization/triggering using Source

3 CANsync synchronization signal Sync Net

Mode for Trigger 2 Synchronization/triggering using Source

3 CANsync synchronization signal Sync Net

Mode for Trigger Controller Synchronization using Source

1 CANsync synchronization signal Sync Net
Control Engineering �mega Drive-Line II 65
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
FB OPT_INIT with trigger signal interconnection to the SYNC signal of the CANsync synchronous bus.

This implementation synchronizes the time slice response as shown in the following drawing. It guaran-
tees that the target value is always applied via BAPS to the V-controller after CANsync process data
communication.

CANsync standard time slice configuration.
Since the position reference value does not become effective until the next cycle when SyncOffset is equal to zero,

it is also possible to execute BAPS process data communication at the end of the event task.
66 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
In the V-controller's „Synchronous operation mit synchronous reference va-
lue specification“ mode, the system applies the position reference value wi-
thin a 500 µs time slice. The system applies immediately other parameters,
e.g. the torque limit or the reference speed value.
In the V-controller's „Synchronous operation mit synchronous reference va-
lue specification“ mode, at BAPS process data communication via parame-
ter P258 (32-bit angle) you must mask (set FALSE) the lowest bits of the
transfer value in dependence on the selected BAPS time slice:

BAPS process data communication in

� 500 µs event task: bit 0

� 1 ms event task: bits 1, 0

� 2 ms event task: bits 2, 1, 0

� 4 ms event task: bits 3, 2, 1, 0

4.6.10Implementing a timer event task for cyclical serial communication.

Example D:

You want to set up a bypass event task to a timer in the �mega Drive-Line II resource. The following
events for timers exist.

When choosing the timer event, observe whether it is to be used to trigger a module (IEI-02, MFM-01 or
V-controller). It is only possible to trigger modules using timer A and not using the internal CPU timer 1
(or 2).

As a result:

� Start bypass event task via FB INTR_SET in a start-up task. If the event is a CPU timer 1 (or 2), you
parameterize the time at Input i_PAR1. It is not possible to trigger modules that need trigger signals;
as a result, FB OPT_INIT is not used. The event task runs completely asynchronously to value con-
version of the modules. Sample application: time slice for the 3964R® protocol.

� Start bypass event task via FB INTR_SET in a start-up task. If the event is a board timer A, input
i_PAR1 on FB INTR_SET is not interconnected. You set up the timer time via FB OPT_INIT. It is
possible to trigger modules that need trigger signals; for this reason, these modules are interconnec-
ted with FB OPT_INIT on timer A. Sample application: high-precision BAPS event task.

In the simplest application, you must insert a fixed time slice as follows:

NOTE

i_EVENT Hardware event(s) Interrupt level Trigger source FB OPT-INIT

0 CPU timer 1 Level 14 No

2 CPU timer 2 Level 13 No

5 Board timer A Level 14 Yes

6 Board timer A Level 13 Yes
Control Engineering �mega Drive-Line II 67
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
� First of all, you set up a bypass event task in the �mega Drive-Line II resource with event CPU timer
1 (or 2) with level 14 or 13. The program POUs are implemented in this event task.

� Since this is a bypass event task, the system starts the event using FB INTR_SET in a start-up task.

Interrupt time = i_PAR1 • 50 µs

Function block INTR_SET in a start-up task: Starts a CPU timer 2 level 13 interrupt with interrupt time of 1 ms.

Code run of an �mega Drive-Line II resource with event tasks and cyclical tasks.
68 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

����mega Drive-Line II and PROPROG wt II
Since a higher-priority event task interrupts a lower-priority one, you should
always use timer event tasks of level 13 if they are to be started in parallel
with synchronous bus systems. You can use FB INTR_SET with
x_EN = FALSE to block a previously started event.

NOTE
Control Engineering �mega Drive-Line II 69
Baumüller Nürnber g GmbH 5.00005.02

����mega Drive-Line II and PROPROG wt II
70 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

Ethernet (optional)
5 ETHERNET (OPTIONAL)

5.1 General

The conditions for setting the IP address and the IP mask are as follows:
• program PROPROG wt II
• library BM_TYPES_20bd00 (or above),
as well as knowledge of the hardware of the �mega Drive-Line II (see chap-
ter 2) and knowledge of Ethernet (IP address, IP mask and routers)

From the number of the software version (SV) on the second identification
plate you can recognize whether you have a device with or without Ethernet
interface.
E.g. SV: 0003-I002-0000
The second part of the number (I002) determines the function of the PLC.
I0xx means that the device is without Ethernet interface respectively I1xx
means that the device is with Ethernet interface.

When communicating with devices via Ethernet using the TCP/IP protocol, you must set a different IP
address for each device. See “Communication via Ethernet (optional)” on page 30.

For the �mega Drive-Line II, users must set the IP address and the IP mask only once. The factory-set
IP address and the IP mask are stored in the �mega Drive-Line II's NOVRAM (non-volatile memory)
(See “Preset, Variable IP Address (Delivery Status)” on page75.).

Under PROPROG wt II, structure ETHERNET_CONFIG_BMSTRUCT is available for setting the �mega
Drive-Line II's IP address and IP mask.

To set the IP address and the IP mask, users must create in a PROPROG wt II project a global variable
of data type

ETHERNET_CONFIG_BMSTRUCT

and assign it to address

%MB3.180016

Example:

_Ethernet_Address AT %MB3.180016 : ETHERNET_CONFIG_BMSTRUCT

Where:

_Ethernet_Address is the variable name with the data type short designati-
on "_" for STRUCT

%MB3.180016 is the address
ETHERNET_CONFIG_BMSTRUCT is the data type of the variable

Structure ETHERNET_CONFIG_BMSTRUCT is defined as follows:

NOTE
Control Engineering �mega Drive-Line II 71
Baumüller Nürnber g GmbH 5.00005.02

Ethernet (optional)
ETHERNET_CONFIG_BMSTRUCT : Struct

d_IP_CONFIG : DWORD;

a_IP_ADDRESS : USINT_4_BMARRAY

a_IP_MASK : USINT_4_BMARRAY

d_ROUTER : DWORD;

END_STRUCT;

Example of accessing an element of the structure:

Ethernet_Address.d_IP_CONFIG

Where:
Ethernet_Address is the variable name
d_IP_CONFIG is the element of the structure with the data type short

designation "d" for DWORD

In the following description, the variable name is replaced by an asterisk (*).

Structure elements *.a_IP_ADDRESS and *.a_IP_MASK are each of data type USINT_4_BMARRAY.
Data type USINT_4_BMARRAY is a field containing four entries of data type Unsigned Short Integer:

USINT_4_BMARRAY ARRAY[0..3] OF USINT;

You enter an IP address in the variables * in entry a_IP_ADDRESS at places 0 to 3.

Example: Entering the IP address 192.168.75.190 (in structured text (ST))

*.a_IP_ADDRESS[0] := USINT#192;

*.a_IP_ADDRESS[1] := USINT#168;

*.a_IP_ADDRESS[2] := USINT#75;

*.a_IP_ADDRESS[3] := USINT#190;

You enter an IP mask in the variables * in entry *.a_IP_MASK at places 0 to 3.

Example: Entering the IP mask 255.255.255.0 (in structured text (ST))

*.a_IP_MASK[0] := USINT#255;

*.a_IP_MASK[1] := USINT#255;

*.a_IP_MASK[2] := USINT#255;

*.a_IP_MASK[3] := USINT#0;

The �mega Drive-Line II offers different options for choosing IP addresses and using the DIP switches
of the �mega Drive-Line II for automatic IP addresses in a network (containing several �mega Drive-
Line IIs). You make the selection via entry

*.d_IP_CONFIG

of structure

ETHERNET_CONFIG_BMSTRUCT.
72 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

Ethernet (optional)
5.2 Setting the IP Address and the IP Mask

Procedure:

– Enter IP address
*.a_IP_ADRESS[0] .. *.a_IP_ADRESS[3]

– Enter IP mask
*.a_IP_MASK[0] .. *.a_IP_MASK[3]

– Save the IP address and the IP mask by writing to
*.d_IP_CONFIG

– Setting the response of routers on the network
*.d_ROUTER

The following options, which are described below, are available for setting the IP address:

� Self-selected, fixed IP address (that is independent of the DIP switch setting)

� Self-selected, variable IP address (that is dependent on the DIP switch setting)

� Preset, variable IP address (that is dependent on the DIP switch setting)

5.2.1 Self-Selected, Fixed IP Address

*.d_IP_CONFIG same as DWORD#16#12345678

The IP address is independent of the DIP switch setting.

The IP address from

*.a_IP_ADDRESS[0] .. *.a_IP_ADDRESS[3]

and the IP mask from

*.a_IP_MASK[0] .. *.a_IP_MASK[3]

are stored in the �mega Drive-Line II.

Example (you must keep to the same sequence):

– Enter the IP address 192.168.75.190 (in structured text (ST))

*.a_IP_ADDRESS[0] := USINT#192;

*.a_IP_ADDRESS[1] := USINT#168;

*.a_IP_ADDRESS[2] := USINT#75;

*.a_IP_ADDRESS[3] := USINT#190;

– Enter the IP mask 255.255.255.0 (in structured text (ST))

*.a_IP_MASK[0] := USINT#255;

*.a_IP_MASK[1] := USINT#255;

*.a_IP_MASK[2] := USINT#255;

*.a_IP_MASK[3] := USINT#0;

– Save the IP address and the IP mask in the �mega Drive-Line II

*.d_IP_CONFIG := DWORD#16#12345678;
Control Engineering �mega Drive-Line II 73
Baumüller Nürnber g GmbH 5.00005.02

Ethernet (optional)
Regardless of the DIP switch setting, the �mega Drive-Line II then has the IP address 192.168.75.190.

IP addresses xxx.yyy.zzz.0 and xxx.yyy.zzz.255 are not allowed for devices.

5.2.2 Self-Selected, Variable IP Address

*.d_IP_CONFIG same as DWORD#16#12345600;

The IP address is dependent on the DIP switch setting.

The IP address from

*.a_IP_ADDRESS[0],

*.a_IP_ADDRESS[1],

*.a_IP_ADDRESS[2] and

*.a_IP_ADDRESS[3] + ”number of DIP switch”

and the IP mask from

*.a_IP_MASK[0] .. *.a_IP_MASK[3]

are stored in the �mega Drive-Line II.

Example (you must keep to the same sequence):

– Enter the IP address 192.168.75.190 (in structured text (ST))

*.a_IP_ADDRESS[0] := USINT#192;

*.a_IP_ADDRESS[1] := USINT#168;

*.a_IP_ADDRESS[2] := USINT#75;

*.a_IP_ADDRESS[3] := USINT#190;

– Enter the IP mask 255.255.255.0 (in structured text (ST))

*.a_IP_MASK[0] := USINT#255;

*.a_IP_MASK[1] := USINT#255;

*.a_IP_MASK[2] := USINT#255;

*.a_IP_MASK[3] := USINT#0;

– Save the IP address and the IP mask in the �mega Drive-Line II

*.d_IP_CONFIG := DWORD#16#12345600;

NOTE
74 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

Ethernet (optional)
With this set IP base address of 192.168.75.190, the following applies:

The �mega Drive-Line with DIP switch setting "0" has the IP address 192.168.75.190,

The �mega Drive-Line with DIP switch setting "1" has the IP address 192.168.75.191,

...,

The �mega Drive-Line with DIP switch setting "30" has the IP address 192.168.75.220,

The �mega Drive-Line with DIP switch setting "31" has the IP address 192.168.75.221,

IP a ddresse s xxx.yyy .zzz.0 an d xxx .yyy.zzz .25 5 are no t a llow ed fo r de vices .

DIP switch settings can be 0 ... 31 (dip switch 1 – dip switch 5). See “Setting
the Slave Number” on page 20.

In this connection, you should note:
IP address xxx.yyy.zzz.224 + 31 corresponds to IP address xxx.yyy.zzz.255
and is not allowed for a device.

The �mega Drive-Line II takes the DIP switch setting after activation or af-
ter a reset. Later changes do not become effective until you switch the de-
vice off and on again or after a reset.

Important:
The DIP switch setting is also used for CANsync addressing!

5.2.3 Preset, Variable IP Address (Delivery Status)

The IP address is -dependent on the DIP switch setting.

The system uses

IP address 192.168.1.1 + “number of DIP switch” that are preset in the �mega Drive-Line II

and the preset

IP mask 255.255.255.0.

NOTE

NOTE
Control Engineering �mega Drive-Line II 75
Baumüller Nürnber g GmbH 5.00005.02

Ethernet (optional)
With this set IP base address of 192.168.1.1, the following applies:

The �mega Drive-Line with DIP switch setting "0" has the IP address 192.168.11,

The �mega Drive-Line with DIP switch setting "2" has the IP address 192.168.12,

...,

The �mega Drive-Line with DIP switch setting "30" has the IP address 192.168.131,

The �mega Drive-Line with DIP switch setting "31" has the IP address 192.168.132,

DIP switch settings can be 0 ... 31 (dip switch 1 - dip switch 5). See “Setting
the Slave Number” on page 20.

The �mega Drive-Line II takes the DIP switch setting after activation or af-
ter a reset. Later changes do not become effective until you switch the de-
vice off and on again or after a reset.

Important:
The DIP switch setting is also used for CANsync addressing!

NOTE

NOTE
76 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

Ethernet (optional)
5.3 Setting the Response with Routers on the Network

The �mega Drive-Line II can communicate on the Ethernet with devices whose IP addresses are out-
side the subnet. For this communication, you can set whether a router is to be used that the �mega
Drive-Line II finds in accordance with the Router Discovery Procedure (RFC 1256).

With the following setting (the delivery status)

*.d_ROUTER not same as DWORD#16#4E6F5F52,

the �mega Drive-Line II uses routers after detecting them on the network.

With the following setting

*.d_ROUTER same as DWORD#16#4E6F5F52,

the �mega Drive-Line II does not use any routers.
Control Engineering �mega Drive-Line II 77
Baumüller Nürnber g GmbH 5.00005.02

Ethernet (optional)
5.4 Communication Between �mega Drive-Line II and PROPROG wt II
via Ethernet

After setting and saving the IP address and the IP mask communication is possible between the �mega
Drive-Line II and PROPROG wt II. For this, you must set in PROPROG wt II under Resource/Settings
communication to DLL and the IP address of the �mega Drive-Line II. See “Communication via Ethernet
(optional)” on page 30.
78 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

BAPS Baumüller Drives Parallel Interface
6 BAPS B AUMÜLLER DRIVES PARALLEL INTERFACE

6.1 BAPS General

BAPS is an internal communications interface for exchanging data between the V-controller module and
the �mega Drive-Line II module.

When carrying out communication, a differentiation is made between process data communication and
requirements data communication.

Process data communication comprises reading and writing time-critical referenced and actual values
and the status and control word in a definable time raster.

Requirements data communication comprises reading and writing non-time-critical parameters of the V-
controller.

����mega Drive-Line II and V-controller

Process data:

The �mega Drive-Line II takes the V-controller's actual values and the status word in a definable time
raster from BAPS and transfers the reference values and the control word via BAPS to the V-controller.

At transfer of the actual values and the status word, the system triggers the "BAPS-Prozeßdaten" (BAPS
process data event) hardware event in the �mega Drive-Line II. This event can trigger an event task in
the �mega Drive-Line II, in which BAPS process data communication can be carried out.

The system sets the instant or the timing code for communication at initialization of the process data
communication in the user program using FB BAPS_INIT.

Requirements data:

The �mega Drive-Line II transfers a read parameter or write parameter job to BAPS. The V-controller
reads the job from the BAPS, processes the appropriate parameters in the V-controller (see the respec-
tive V-controller description) and returns the result to the BAPS. The �mega Drive-Line II then reads the
result of communication from the BAPS.

Programming BAPS communication on the Omega Drive- Line II

You program the �mega Drive-Line II using the PROPROG wt II programming system (see the
PROPROG wt II manual).

The Baumüller user libraries SYSTEM1_DLII_20bd00 and SYSTEM2_DLII20bd00 (or above) are
available for programming BAPS communication.

In library SYSTEM1_DLII_20bd00 (or above), function blocks are available for initializing process data
communication, for process data communication and for requirements data communication.

You need the following FBs for process data communication:

BAPS_INIT initialization of process data communication.

BAPS_PD_COMM8 process data communication
(maximum of 8 reference values and 8 actual values)
Control Engineering �mega Drive-Line II 79
Baumüller Nürnber g GmbH 5.00005.02

BAPS Baumüller Drives Parallel Interface
or

BAPS_PD_COMM24 process data communication
(maximum of 2 reference values and 4 actual values)

or

BAPS_PD_COMM2 process data communication
(maximum of 2 reference values and 2 actual values)

For monitoring process data communication (optional):

BAPS_PD_CONTROL monitoring the call of FB BAPS_PD_COMMxx (and with this, indirect
monitoring of the call of the event task)

You need the following FBs for requirements data communication:

BAPS_PAR_READ requirements data communication
(read parameter job)

BAPS_PAR_WRITE requirements data communication
(write parameter job)

and

BAPS_SD_CONTROL structure and monitoring requirements data communication.

Library SYSTEM2_DLII _20bd00 (or above) contains amongst others, the following function
block:

INTR_SET is used by FB BAPS_INIT; FB for linking and activating a hardware si-
gnal with the BAPS process data event).
80 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

BAPS Baumüller Drives Parallel Interface
6.2 Function Blocks for BAPS Overview

In addition to the standard function blocks, you can use manufacturer-defined function blocks if you have
logged on manufacturer-defined libraries in a project.

Note: Logging on of libraries is described in the general help.

The following function blocks are available for BAPS:

Function block Brief description
BAPS_INIT Initialization of the BAPS (Baumüller drive parallel

interface) in the �mega Drive-Line II
BAPS_PAR_READ BAPS read parameter
BAPS_PAR_WRITE BAPS write parameter
BAPS_PD_COMM2 Process data communication via the BAPS in the

�mega Drive-Line II for a maximum of two referenced
and actual values

BAPS_PD_COMM24 process data communication via the BAPS in the
�mega Drive-Line II for a maximum of two referneced
and 4 actual values, preferably in „2 reference and 4
actual values in same cycle mode“ (see
w_COMMAND_REG)

BAPS_PD_COMM8 Process data communication via the BAPS in the
�mega Drive-Line II for a maximum of eight referenced
and actual values

BAPS_PD_CONTROL BAPS process data communication monitoring
BAPS_SD_CONTROL BAPS requirements data communication
Control Engineering �mega Drive-Line II 81
Baumüller Nürnber g GmbH 5.00005.02

BAPS Baumüller Drives Parallel Interface
6.2.1 BAPS_INIT

Description

You can use this function block for BAPS to initialize process data communication (cyclical communica-
tion) between the V-controller and the �mega Drive-Line II via the BAPS interface.

FB BAPS_INIT uses library SYSTEM2_DLII_20bd00 or above.

NOTE

Parameter input Data type Description
us_HW_TYPE USINT

0
�mega Drive-Line II

i_EVENT INT
0, 4, 8

Event

w_COMMAND_REG WORD BAPS control register
us_MODE USINT

0, 1, 2
Mode

u_WR_PAR_NR0 UINT Reference va lue param eter num ber 0
u_WR_PAR_NR1 UINT Reference va lue param eter num ber 1
u_WR_PAR_NR2 UINT Reference va lue param eter num ber 2
u_WR_PAR_NR3 UINT Reference va lue param eter num ber 3
u_WR_PAR_NR4 UINT Reference va lue param eter num ber 4
u_WR_PAR_NR5 UINT Reference va lue param eter num ber 5
u_WR_PAR_NR6 UINT Reference va lue param eter num ber 6
u_WR_PAR_NR7 UINT Reference va lue param eter num ber 7
u_RD_PAR_NR0 UINT Actual value parameter number 0
u_RD_PAR_NR1 UINT Actual value parameter number 1
u_RD_PAR_NR2 UINT Actual value parameter number 2
u_RD_PAR_NR3 UINT Actual value parameter number 3
u_RD_PAR_NR4 UINT Actual value parameter number 4
u_RD_PAR_NR5 UINT Actual value parameter number 5
u_RD_PAR_NR6 UINT Actual value parameter number 6
u_RD_PAR_NR7 UINT Actual value parameter number 7
t_TIME TIME Monitoring time in ms
x_EN BOOL Enable initialization
x_RESET BOOL Reset
82 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

BAPS Baumüller Drives Parallel Interface
FB BAPS_INIT makes it possible to initialize and reinitialize the BAPS for cyclical communication.

FBs BAPS_PD_COMM8, BAPS_PD_COMM2 or BAPS_PD_COMM24 (also referred to below as
BAPS_PD_COMMxx) are available for cyclical communication.

Cyclical communication can be initialized for

up to two reference and two actual values using FB BAPS_PD_COMM2,

up to eight reference and eight actual values using FB BAPS_PD_COMM8,

up to two reference and four actual values using FB BAPS_PD_COMM24 a)

Input us_HW_TYPE:

At input us_HW_TYPE you state with us_HW_TYPE = 0 that FB BAPS_INIT is used in the �mega
Drive-Line II (us_HW_TYPE ≠ 0 is not implemented).

If input us_HW_TYPE is not assigned, this yields the presetting
us_HW_TYPE = 0 (FB BAPS_INIT in the �mega Drive-Line II).

The system can process the BAPS_PD_COMMxx FB of cyclical communication in every cycle in the
main program of an event task (to any event) or in an event task to the „BAPS process data“ event. In
the latter case, the „BAPS process data“ event is initialized by FB BAPS_INIT .

The „BAPS process data“ event can be initialized with an interrupt level of 13 (low priority) or 14 (high
priority).

Input i_EVENT:

With i_EVENT = 4, the system initializes the „BAPS process data“ event with an interrupt level of 13
(low).
With i_EVENT = 8, the system initializes the „BAPS process data“ event with an interrupt level of 14
(high).

If input i_EVENT is not assigned or i_EVENT = 0, the system does not initialize any events. If i_EVENT
is not 0, 4 or 8, the system sets error bit 3 at output b_ERR.

Parameter output Data type Description
w_STATUS_REG WORD BAPS status register
x_BUSY BOOL BUSY bit
b_SL_QUIT BYTE V-controller acknowledgement
b_ERR BYTE Error byte
x_ERR BOOL Error bit
x_OK BOOL OK bit

a) From V-controller software version 000309 onwards

NOTE
Control Engineering �mega Drive-Line II 83
Baumüller Nürnber g GmbH 5.00005.02

BAPS Baumüller Drives Parallel Interface
Inputs u_WR_PAR_NR0 to u_WR_PAR_NR7:

You state at the inputs the reference value parameter numbers of the reference values that are to be
cyclically transferred

u_WR_PAR_NR0 to u_WR_PAR_NR7 (when using BAPS_PD_COMM8),

u_WR_PAR_NR0 and u_WR_PAR_NR1 (when using BAPS_PD_COMM2 or
 BAPS_PD_COMM24)

Inputs u_RD_PAR_NR0 to u_RD_PAR_NR7:

You state at the inputs the actual value parameter numbers of the actual values that are to be cyclically
transferred

u_RD_PAR_NR0 to u_RD_PAR_NR7 (when using BAPS_PD_COMM8),

u_RD_PAR_NR0 and u_RD_PAR_NR1 (when using BAPS_PD_COMM2),

u_RD_PAR_NR0 to u_RD_PAR_NR3 (when using BAPS_PD_COMM24),

Input w_COMMAND_REG:

The following take place at input w_COMMAND_REG:

– selection of reference and actual value transfer,

– selection of the method of calculating the communications cycle time of reference and actual va-
lue transfer as well as

– setting of the communications cycle time of reference and actual value transfer

Bit No. Meaning
0 Reserved

1, 2 Bit 2
0
0
1
1

Bit 1
0
1
0
1

Selection of reference and actual value transfer (→ tcyc P)
Time slice procedure
direct specification of reference/actual value no.
Two reference and two (four) actual values in the same cycle
Reserved

3 Bit 3

0
1

Selection of the method of calculating the communications cycle time of
reference and actual value transfer (→ tcyc K)
Counter
Time slice

4, 5, 6, 7
1…15:

1…15:

Bit 3 = 0:
Value of the counter
The system internally increments a counter every 500µs. If the reading of
this counter matches the value that is formed from bits 4 to 7, the system
carries out process data communication (assuming that an event from the
V-controller is pending).

Bit 3 = 1:
Number of the time slice
Process data communication takes place in each case every 500µs after
the time slice whose number is entered in bits 4 to 7 (assuming that an
event from the V-controller is pending).

8 ... 15 Reserved
84 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

BAPS Baumüller Drives Parallel Interface
Time slice of the V-controller for cyclical communication: 500 µs

tcyc K - Time between two communications via the BAPS interface

tcyc P - Time with which the parameters (reference and actual values) at position x are updated

Determination of t cyc K : →→→→ bits 3 and 4 to 7

Counter: →→→→ bit 3 = 0

tcyc K = 0.5 ms * “value from bits 4 to 7”
Minimum value: 0.5 ms * 1 = 0.5 ms
Example: 0.5 ms * 2 = 1.0 ms
Example: 0.5 ms * 3 = 1.5 ms
Example: 0.5 ms * 4 = 2.0 ms

etc.
Maximum value: 0.5 ms * 15 = 7.5 ms

Time slice: →→→→ bit 3 = 1

tcyc K = 0.5 ms * 2 “value from bits 4 to 7”

Minimum value: 0.5 ms * 21 = 1 ms

Example: 0.5 ms * 22 = 2 ms

Example: 0.5 ms * 23 = 4 ms

Example: 0.5 ms * 24 = 8 ms

Example: 0.5 ms * 25 = 16 ms
etc.

Maximum value: 0.5 ms * 215 = 16384 ms

After every cycle time tcyc K, the system must call the respective function
block in the �mega Drive-Line II for BAPS process data communication (FB
BAPS_PD_COMMxx). For example: in an event task to the BAPS process
data communication event, or in an event task to the SYNC signal network
(CANsync) event.

If BAPS process data communication is triggered via a synchronization si-
gnal or you use the Synchronized position reference value specification mo-
de, you must set parameter 167 (Sync.-Slot) to tcyc K in µs.

NOTE

NOTE
Control Engineering �mega Drive-Line II 85
Baumüller Nürnber g GmbH 5.00005.02

BAPS Baumüller Drives Parallel Interface
Determination of t cyc P : bits 1 and 2:

Time slice procedure (up to 8 reference values and 8 actual values):

tcyc P x = (2 * tcyc K) * 2x ; x: parameter number at FB: 0 to 7

tcyc P 0 = (2 * tcyc K) * 20 = 2 * tcyc K = 1 ms (where tcyc K = 0.5 ms)

tcyc P 1 = (2 * tcyc K) * 21 = 4 * tcyc K = 2 ms (where tcyc K = 0.5 ms)

tcyc P 2 = (2 * tcyc K) * 22 = 8 * tcyc K = 4 ms (where tcyc K = 0.5 ms)

tcyc P 3 = (2 * tcyc K) * 23 = 16 * tcyc K = 8 ms (where tcyc K = 0.5 ms)

tcyc P 4 = (2 * tcyc K) * 24 = 32 * tcyc K = 16 ms (where tcyc K = 0.5 ms)

tcyc P 5 = (2 * tcyc K) * 25 = 64 * tcyc K = 32 ms (where tcyc K = 0.5 ms)

tcyc P 6 = (2 * tcyc K) * 26 = 128 * tcyc K = 128 ms (where tcyc K = 0.5 ms)

tcyc P 7 = (2 * tcyc K) * 27 = 256 * tcyc K = 128 ms (where tcyc K = 0.5 ms)

tcyc P 0 = (2 * tcyc K) * 20 = 2 * tcyc K = 4 ms (where tcyc K = 0.5 ms)

tcyc P 1 = (2 * tcyc K) * 21 = 4 * tcyc K = 8 ms (where tcyc K = 2 ms)

tcyc P 2 = (2 * tcyc K) * 22 = 8 * tcyc K = 16 ms (where tcyc K = 2 ms)

tcyc P 3 = (2 * tcyc K) * 23 = 16 * tcyc K = 32 ms (where tcyc K = 2 ms)

tcyc P 4 = (2 * tcyc K) * 24 = 32 * tcyc K = 64 ms (where tcyc K = 2 ms)

tcyc P 5 = (2 * tcyc K) * 25 = 64* tcyc K = 128 ms (where tcyc K = 2 ms)

tcyc P 6 = (2 * tcyc K) * 26 = 128 * tcyc K = 256 ms (where tcyc K = 2 ms)

tcyc P 7 = (2 * tcyc K) * 27 = 256 * tcyc K = 512 ms (where tcyc K = 2 ms)

Two reference values and two (four) actual values in the same cycle:

tcyc P 0 = tcyc P 1 (= tcyc P 2 = tcyc P 3) = tcyc K

Input us_MODE:

You use us_MODE = 0 to state that FB BAPS_INIT is called once for process data configuration. This
is necessary at first initialization of the BAPS interface after a reset, a warm boot or a cold boot.

You use us_MODE = 1 to state that FB BAPS_INIT is used to change the process data configuration
when process data communication is blocked.

The following applies additionally from V-controller software version 000309 onwards:

Using us_MODE = 2, you can overwrite the reference value parameter numbers of reference values 0
and 1 that are to be cyclically transferred as well as the actual value parameter number of actual values
0, 1, 2 und 3 that are to be cyclically transferred. This is provided for reinitializing or reconfiguring the
BAPS during ongoing process data communication.

Start initialization of the BAPS using us_MODE = 2 is not possible. In
us_MODE = 2, FB BAPS_INIT does not issue any OK or error messages!

NOTE
86 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

BAPS Baumüller Drives Parallel Interface
Input t_TIME:

You set the monitoring time in seconds at input t_TIME. If input t_TIME is not assigned, this yields a pre-
setting of 3 s.

Input x_EN:

Using x_EN = TRUE, you enable initialization or process data configuration of the BAPS. The default
setting is x_EN = TRUE.

Input x_RESET:

You use x_RESET = TRUE to reset FB BAPS_INIT.

Output w_STATUS_REG:

With bit 0 set, output w_STATUS_REG indicates that the V-controller is synchronized to the Trigger Con-
troller signal. (See “The Interrupt Sources and Trigger Signals” on page 52.)

Output x_BUSY:

With us_MODE = 1, output x_BUSY indicates by TRUE that initialization of the process data configura-
tion is active; with us_MODE = 0 or 2, x_BUSY stays FALSE.

Output b_SL_QUIT:

The system reports at output b_SL_QUIT the V-controller acknowledgement after initialization has been
completed.

Output x_OK:

Output x_OK is set to TRUE if the BAPS and possibly the „BAPS process data“ event have been initia-
lized correctly.

Outputs x_ERR, b_ERR:

If an error occurs, the system sets error bit x_ERR to TRUE and outputs error byte b_ERR (does NOT
apply to us_MODE = 2).

Value
b_SL_QUIT Meaning

16#00 No meaning
16#01 Reference value has been read/actual value has been written
16#02 Configuration/initialization has been carried out correctly

16#03 – 16#7F Reserved
16#80 An uninterpretable command has been received
16#81 Configuration/initialization has not been carried out
16#82 Actual value cannot be read
16#83 Reference value cannot be written

16#84 – 16#FE Reserved
16#FF No meaning
Control Engineering �mega Drive-Line II 87
Baumüller Nürnber g GmbH 5.00005.02

BAPS Baumüller Drives Parallel Interface
Error byte b_ERR:

Bit
number Error

0 Output b_SL_QUIT ≠ 16#02
1 Reserved
2 Reserved
3 Input i_EVENT is not 4 or 8 (or 0 for no event)
4 Timeout
5 Error setting up the event

6 – 7 Reserved
88 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

BAPS Baumüller Drives Parallel Interface
6.2.2 BAPS_PAR_READ

Description

You can use this function block for BAPS to read a requirements data value (parameter) of the V-con-
troller via the BAPS interface and FB BAPS_SD_CONTROL.

FB BAPS_PAR_READ uses library BM_TYPES_20bd00 or above.

FB BAPS_PAR_READ transfers with the values of inputs u_PAR_NR and us_PAR_ELEMENT a read
parameter job to FB BAPS_SD_CONTROL. FB BAPS_SD_CONTROL passes on the read parameter
job to the V-controller and returns the data that the V-controller returns to FB BAPS_PAR_READ. The
system displays at output ud_PAR_VALUE the parameter element that the V-controller requested, and
displays the format at output x_PAR_FORMAT. If errors occur while the read parameter job is being car-
ried out, the system displays them at the error outputs of FB BAPS_PAR_READ and specifies them in
more detail.

You can use (instantiate) FB BAPS_PAR_READ several times. FB BAPS_SD_CONTROL is used only
once and it processes in each case one read parameter job (or write parameter job, see FB
BAPS_PAR_WRITE).

NOTE

Parameter input Data type Description
_BAPS_SD_DATA BAPS_BMSTRUCT Communications data
u_PAR_NR UINT Parameter number
us_PAR_ELEMENT USINT

7
Parameter element

x_EN BOOL Enable
x_RESET BOOL Reset

Parameter output Data type Description
_BAPS_SD_DATA BAPS_BMSTRUCT Communications data
ud_PAR_VALUE UDINT Read parameter value
x_PAR_FORMAT BOOL Format of the parameter value
x_BUSY BOOL Communication is active
i_ERR_DETAIL INT Operating system error
i_ERR_COMM INT Communications error
x_ERR BOOL Error bit
x_OK BOOL OK bit
Control Engineering �mega Drive-Line II 89
Baumüller Nürnber g GmbH 5.00005.02

BAPS Baumüller Drives Parallel Interface
Input/output _BAPS_SD_DATA:

At _BAPS_SD_DATA, you must connect a global variable of data type BAPS_BMSTRUCT.

Example:

_BAPS_SD_DATEN : BAPS_BMSTRUCT;

Where:

_BAPS_SD_DATEN is the variable name with the data type short designati-
on "_" for STRUCT

BAPS_BMSTRUCT is the data type

The system uses this variable to exchange data with FB BAPS_SD_CONTROL. This variable is connec-
ted with the FBs of requirements data communication of the BAPS – this also applies if you use FBs
BAPS_PAR_READ and/or BAPS_PAR_WRITE several times.

Input u_PAR_NR:

At input u_PAR_NR, you state the parameter number of the parameter whose value you want to read.

Input us_PAR_ELEMENT:

At input us_PAR_ELEMENT, you state the element of the parameter to be read. If us_PAR_ELEMENT
is not assigned, this yields a presetting of us_PAR_ELEMENT = 7 (≡ value of the parameter).

Input x_EN:

Communication is started by means of x_EN = TRUE. If x_EN is set to FALSE before x_BUSY=FALSE,
it is assumed that communication was cancelled deliberately. In this case, FB BAPS_PAR_WRITE and
FB BAPS_SD_CONTROL must each be reset using x_RESET = TRUE.

Input x_RESET:

You use x_RESET = TRUE to reset the FB.

Output ud_PAR_VALUE:

The read parameter value is output at output ud_PAR_VALUE.

Output x_PAR_FORMAT:

The format of parameter value is made available at output x_PAR_FORMAT. x_PAR_FORMAT = FAL-
SE means word format, x_PAR_FORMAT = TRUE means doubleword format.

Output x_BUSY:

Output x_BUSY indicates by TRUE the communication is active.

Output x_OK:

The system sets output x_OK to TRUE when communication has been completed successfully.
90 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

BAPS Baumüller Drives Parallel Interface
Outputs x_ERR, i_ERR_DETAIL, i_ERR_COMM:

If an error occurs, the system sets error bit x_ERR to TRUE and specifies the error at outputs
i_ERR_DETAIL und i_ERR_COMM.

Error number i_ERR_DETAIL:

Error number i_ERR_COMM:

i_ERR_DETAIL Error
0 No error
-1 Data error that is not specified in more detail
-2 Value less than minimum value
-3 Value greater than maximum value
-4 Element must not be written to
-5 No element present
-6 Element not currently available due to calculation
-7 Wrong transfer data format
-8 Wrong number of elements at writing

i_ERR_COMM Error
0 No error
-1 Communications error
Control Engineering �mega Drive-Line II 91
Baumüller Nürnber g GmbH 5.00005.02

BAPS Baumüller Drives Parallel Interface
6.2.3 BAPS_PAR_WRITE

Description

You can use this function block for BAPS to write a requirements data value (parameter) of the V-con-
troller via the BAPS interface and FB BAPS_SD_CONTROL.

FB BAPS_PAR_WRITE uses library BM_TYPES_20bd00 or above.

FB BAPS_PAR_WRITE transfers with the values of inputs u_PAR_NR, x_PAR_FORMAT and
ud_PAR_VALUE a write parameter job to FB BAPS_SD_CONTROL. FB BAPS_SD_CONTROL passes
on the write parameter job to the V-controller and returns the result of communication that the V-control-
ler returns to FB BAPS_PAR_WRITE. If errors occur while the write parameter job is being carried out,
the system displays them at the error outputs of FB BAPS_PAR_WRITE and specifies them in more de-
tail.

You can use (instantiate) FB BAPS_PAR_WRITE several times. FB BAPS_SD_CONTROL is used only
once and it processes in each case one write parameter job (or write parameter job, see FB
BAPS_PAR_WRITE).

NOTE

Parameter input Data type Description
_BAPS_SD_DATA BAPS_BMSTRUCT Communications data
u_PAR_NR UINT Parameter number
x_PAR_FORMAT BOOL Format of the parameter value
ud_PAR_VALUE UDINT Parameter value
x_EN_ERR_FORMAT BOOL Display format error ON/OFF
x_EN BOOL Enable
x_RESET BOOL Reset

Parameter output Data type Description
_BAPS_SD_DATA BAPS_BMSTRUCT Communications data
x_BUSY BOOL Communication is active
i_ERR_DETAIL INT Operating system error
i_ERR_COMM INT Communications error
x_ERR BOOL Group error bit
x_OK BOOL OK bit
92 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

BAPS Baumüller Drives Parallel Interface
Input/output _BAPS_SD_DATA:

At _BAPS_SD_DATA, you must connect a global variable of data type BAPS_BMSTRUCT.

Example:

_BAPS_SD_DATEN : BAPS_BMSTRUCT;

Where:

_BAPS_SD_DATEN is the variable name with the data type short designati-
on "_" for STRUCT

BAPS_BMSTRUCT is the data type

The system uses this variable to exchange data with FB BAPS_SD_CONTROL. This variable is connec-
ted with the FBs of requirements data communication of the BAPS – this also applies if you use FBs
BAPS_PAR_READ and/or BAPS_PAR_WRITE several times.

Input u_PAR_NR:

At input u_PAR_NR, you state the parameter number of the parameter whose value you want to write.

Input x_PAR_FORMAT:

At input x_PAR_FORMAT, you set the format of the value to be written. x_PAR_FORMAT = FALSE me-
ans word format, x_PAR_FORMAT = TRUE means doubleword format.

Input ud_PAR_VALUE:

You state the parameter value to be written at input ud_PAR_VALUE.

Input x_EN_ERR_FORMAT:

You can use input x_EN_ERR_FORMAT to set display of a format error i_ERR_DETAIL = -7 in error bit
x_ERR. If you do not want this to be displayed, set x_EN_ERR_FORMAT to FALSE. If input
x_EN_ERR_FORMAT is not assigned, this yields a presetting of x_EN_ERR_FORMAT = TRUE and
i_ERR_DETAIL = -7 is displayed in x_ERR.

If x_EN_ERR_FORMAT = FALSE, the system displays a format error in
i_ERR_DETAIL (= -7); however, the format error is not displayed in error bit
x_ERR!
In this case, the OK bit is set to TRUE despite the format error!

Input x_EN:

Communication is started by means of x_EN = TRUE.

If x_EN is set to FALSE before x_BUSY=FALSE, it is assumed that communication was cancelled deli-
berately. In this case, FB BAPS_PAR_WRITE and FB BAPS_SD_CONTROL must each be reset using
x_RESET = TRUE.

NOTE
Control Engineering �mega Drive-Line II 93
Baumüller Nürnber g GmbH 5.00005.02

BAPS Baumüller Drives Parallel Interface
Input x_RESET:

You use x_RESET = TRUE to reset the FB.

Output x_BUSY:

Output x_BUSY indicates by TRUE the communication is active.

Output x_OK:

The system sets output x_OK to TRUE when communication has been completed successfully.

Outputs x_ERR, i_ERR_DETAIL, i_ERR_COMM:

If an error occurs, the system sets error bit x_ERR to TRUE and specifies the error at outputs
i_ERR_DETAIL und i_ERR_COMM.

Error number i_ERR_DETAIL:

Error number i_ERR_COMM:

i_ERR_DETAIL Error
0 No error
-1 Data error that is not specified in more detail
-2 Value less than minimum value
-3 Value greater than maximum value
-4 Element must not be written to
-5 No element present
-6 Element not currently available due to calculation!
-7 Wrong transfer data format
-8 Wrong number of elements at writing

i_ERR_COMM Error
0 No error
-1 Communications error
94 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

BAPS Baumüller Drives Parallel Interface
6.2.4 BAPS_PD_COMM2

Description

You can use this function block for BAPS to initialize process data communication between the V-con-
troller and the �mega Drive-Line II via the BAPS interface

The system sends the reference values and the control word to the V-controller; the V-controller receives
and outputs the actual values and the status word.

Input us_HW_TYPE:

At input us_HW_TYPE you state with us_HW_TYPE = 0 that FB BAPS_PD_COMM2 is used in the
�mega Drive-Line II (us_HW_TYPE ≠ 0 is not implemented).

If input us_HW_TYPE is not assigned, this yields the presetting
us_HW_TYPE=0 (FB BAPS_PD_COMM2 in the �mega Drive-Line II).

Input w_CONTROLWORD:

At input w_CONTROLWORD, you state the control word that is to be sent to the V-controller.

Parameter input Data type Description
us_HW_TYPE USINT

0
�mega Drive-Line II

w_CONTROLWORD WORD Control word
w_COMMAND_REG WORD Control register
us_MODE USINT

0, 1
Mode

ud_WR_VALUE0 UDINT Reference value 0
ud_WR_VALUE1 UDINT Reference value 1
x_EN BOOL Enable

Parameter output Data type Description
w_STATUSWORD WORD Status word
w_STATUS_REG WORD Status register
ud_RD_VALUE0 UDINT Actual value 0
ud_RD_VALUE1 UDINT Actual value 1
b_SL_QUIT BYTE Controller acknowledgement
b_ERR BYTE Error byte
x_ERR BOOL Error bit

NOTE
Control Engineering �mega Drive-Line II 95
Baumüller Nürnber g GmbH 5.00005.02

BAPS Baumüller Drives Parallel Interface
Input w_COMMAND_REG:

The following take place at input w_COMMAND_REG:

– selection of reference and actual value transfer,

– selection of the method of calculating the communications cycle time of reference and actual va-
lue transfer as well as

– setting of the communications cycle time of reference and actual value transfer

Time slice of the V-controller for cyclical communication: 500 µs

tcyc K - Time between two communications via the BAPS

tcyc P - Time with which the system updates the parameters (reference and actual values) at position x
(inputs ud_WR_VALUEx and outputs ud_RD_VALUEx)

Determination of t cyc K : →→→→ bits 3 and 4 to 7

Counter: →→→→ bit 3 = 0

tcyc K = 0.5 ms * “value from bits 4 to 7”
Minimum value: 0.5 ms * 1 = 0.5 ms
Example: 0.5 ms * 2 = 1.0 ms
Example: 0.5 ms * 3 = 1.5 ms
Example: 0.5 ms * 4 = 2.0 ms

etc.
Maximum value: 0.5 ms * 15 = 7.5 ms

Bit No. Meaning
0 Reserved

1, 2 Bit 2
0
0
1
1

Bit 1
0
1
0
1

Selection of reference and actual value transfer (→ tcyc P)
Time slice procedure
direct specification of reference/actual value no.
Two reference and two actual values in the same cycle
Reserved

3 Bit 3

0
1

Selection of the method of calculating the communications cycle time of
reference and actual value transfer (→ tcyc K)
Counter
Time slice

4, 5, 6, 7
1…15:

1…15:

Bit 3 = 0:
Value of the counter
The system internally increments a counter every 500µs. If the reading of
this counter matches the value that is formed from bits 4 to 7, the system
carries out process data communication (assuming that an event from the
V-controller is pending).

Bit 3 = 1:
Number of the time slice
Process data communication takes place in each case every 500µs after
the time slice whose number is entered in bits 4 to 7 (assuming that an
event from the V-controller is pending).

8 ... 15 Reserved
96 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

BAPS Baumüller Drives Parallel Interface
Time slice: →→→→ bit 3 = 1

tcyc K = 0.5 ms * 2 “value from bits 4...7”

Minimum value: 0.5 ms * 21 = 1 ms

Example: 0.5 ms * 22 = 2 ms

Example: 0.5 ms * 23 = 4 ms

Example: 0.5 ms * 24 = 8 ms

Example: 0.5 ms * 25 = 16 ms
etc.

Maximum value: 0.5 ms * 215 = 16384 ms

After every cycle time tcyc K, must call FB BAPS_PD_COMM2 in the �mega
Drive-Line II (e.g. in an event task to the „BAPS process data“ event or in an
event task to the SYNC signal network (CANsync) event).

If (BAPS) process data communication is triggered via a synchronization si-
gnal or you use the Synchronized position reference value specification mo-
de, you must set parameter 167 (Sync.-Slot) to tcyc K in µs.

Determination of t cyc P : bits 1 and 2:

Time slice procedure (up to 2 reference values and 2 actual values):

tcyc P x = (2 * tcyc K) * 2x ; x: referenced/actual value number at FB: 0 to 1 (inputs
ud_WR_VALUEx and outputs ud_RD_VALUEx)

tcyc P 0 = (2 * tcyc K) * 20 = 2 * tcyc K = 1 ms (where tcyc K = 0.5 ms)

tcyc P 1 = (2 * tcyc K) * 21 = 4 * tcyc K = 2 ms (where tcyc K = 0.5 ms)

tcyc P 0 = (2 * tcyc K) * 20 = 2 * tcyc K = 4 ms (where tcyc K = 2 ms)

tcyc P 1 = (2 * tcyc K) * 21 = 4 * tcyc K = 8 ms (where tcyc K = 2 ms)

Two reference values and two actual values in the same cycle:

tcyc P 0 = tcyc P 1 = tcyc K

NOTE

NOTE
Control Engineering �mega Drive-Line II 97
Baumüller Nürnber g GmbH 5.00005.02

BAPS Baumüller Drives Parallel Interface
Input us_MODE:

Using us_MODE = 0, you state that FB BAPS_PD_COMM2 is called in a cyclical main program or in an
event task to any event (e.g. to the SYNC signal network (CANsync) event).

Using us_MODE = 1 you state that FB BAPS_PD_COMM2 is called in an event task to the „BAPS pro-
cess data“ event (see description of FB BAPS_INIT, input i_EVENT).

If us_MODE is not assigned, this yields the presetting us_MODE = 0 (use of FB BAPS_PD_COMM2 in
the cyclical main program or in an event task to any event).

Inputs ud_WR_VALUE0, ud_WR_VALUE3:

The reference values are connected to inputs ud_WR_VALUE0 and ud_WR_VALUE1 whose parameter
numbers were stated at FB BAPS_INIT (inputs u_WR_PAR_NR0 and u_WR_PAR_NR1) at initialization
of BAPS process data communication.

Input x_EN:

Communication is enabled by means of x_EN = TRUE. The default setting is x_EN = TRUE, i.e. com-
munication is enabled.

Output w_STATUSWORD:

At output w_STATUSWORD, the system outputs the V-controller's status word.

Output w_STATUS_REG:

With bit 0 set, output w_STATUS_REG (BAPS status register) indicates that the V-controller is synchro-
nized to the Trigger Controller signal. (See “The Interrupt Sources and Trigger Signals” on page 52.)

Outputs ud_RD_VALUE0, ud_RD_VALUE3:

The actual values are output at outputs ud_WR_VALUE0 and ud_WR_VALUE1 whose parameter num-
bers were stated at FB BAPS_INIT (inputs u_RD_PAR_NR0 and u_RD_PAR_NR1) at initialization of
BAPS process data communication.
98 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

BAPS Baumüller Drives Parallel Interface
Output b_SL_QUIT:

The system reports at output b_SL_QUIT the V-controller acknowledgement after communication has
been completed.

Outputs x_ERR, b_ERR:

If an error occurs, the system sets error bit x_ERR to TRUE and outputs error byte b_ERR.

Error byte b_ERR:

Value
b_SL_QUIT Meaning

16#00 No meaning
16#01 Reference value has been read/actual value has been written
16#02 Configuration/initialization has been carried out correctly

16#03 – 16#7F Reserved
16#80 An uninterpretable command has been received
16#81 Configuration/initialization has not been carried out
16#82 Actual value cannot be read
16#83 Reference value cannot be written

16#84 – 16#FE Reserved
16#FF No meaning

Bit
number Error

0 Output b_SL_QUIT ≠ 16#01
1 -7 Reserved
Control Engineering �mega Drive-Line II 99
Baumüller Nürnber g GmbH 5.00005.02

BAPS Baumüller Drives Parallel Interface
6.2.5 BAPS_PD_COMM24

Description

You can use this function block for BAPS to initialize process data communication between the V-con-

troller and the �mega Drive-Line II via the BAPS interface a)

The system sends the reference values and the control word to the V-controller; the V-controller receives
and outputs the actual values and the status word.

Input us_HW_TYPE:

At input us_HW_TYPE you state with us_HW_TYPE = 0 that FB BAPS_PD_COMM24 is used in the
�mega Drive-Line II (us_HW_TYPE ≠ 0 is not implemented).

If input us_HW_TYPE is not assigned, this yields the presetting
us_HW_TYPE=0 (FB BAPS_PD_COMM24 in the �mega Drive-Line II).

a) From V-controller software version 000309 onwards

Parameter input Data type Description
us_HW_TYPE USINT

0
�mega Drive-Line II

w_CONTROLWORD WORD Control word
w_COMMAND_REG WORD Control register
us_MODE USINT Mode
ud_WR_VALUE0 UDINT Reference value 0
ud_WR_VALUE1 UDINT Reference value 1
t_RE_INIT_TIME TIME Monitoring time in ms for reinitializing
x_RE_INIT_START BOOL Start (edge) for reinitializing
x_EN BOOL Enable

Parameter input Data type Description
w_STATUSWORD WORD Status word
w_STATUS_REG WORD Status register
ud_RD_VALUE0 UDINT Actual value 0
ud_RD_VALUE1 UDINT Actual value 1
ud_RD_VALUE2 UDINT Actual value 2
ud_RD_VALUE3 UDINT Actual value 3
b_SL_QUIT BYTE Controller acknowledgement
b_ERR BYTE Error byte
x_ERR BOOL Error bit
x_RE_INIT_ERR BOOL Error bit of reinitializing
x_RE_INIT_OK BOOL OK bit of reinitializing

NOTE
100 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

BAPS Baumüller Drives Parallel Interface
Input w_CONTROLWORD:

At input w_CONTROLWORD, you state the control word that is to be sent to the V-controller.

Input w_COMMAND_REG:

The following take place at input w_COMMAND_REG:

– selection of reference and actual value transfer,

– selection of the method of calculating the communications cycle time of reference and actual va-
lue transfer as well as

– setting of the communications cycle time of reference and actual value transfer

Time slice of the V-controller for cyclical communication: 500 µs

tcyc K - Time between two communications via the BAPS

tcyc P - Time with which the system updates the parameters (reference and actual values) at position x
(inputs ud_WR_VALUEx and outputs ud_RD_VALUEx)

Bit No. Meaning
0 Reserved

1, 2 Bit 2
0
0
1
1

Bit 1
0
1
0
1

Selection of reference and actual value transfer (→ tcyc P)
Time slice procedure
direct specification of reference/actual value no.
Two reference and two (four) actual values in the same cycle
Reserved

3 Bit 3

0
1

Selection of the method of calculating the communications cycle time of
reference and actual value transfer (→ tcyc K)
Counter
Time slice

4, 5, 6, 7
1…15:

1…15:

Bit 3 = 0:
Value of the counter
The system internally increments a counter every 500µs. If the reading of
this counter matches the value that is formed from bits 4 to 7, the system
carries out process data communication (assuming that an event from the
V-controller is pending).

Bit 3 = 1:
Number of the time slice
Process data communication takes place in each case every 500µs after
the time slice whose number is entered in bits 4 to 7 (assuming that an
event from the V-controller is pending).

8 ... 15 Reserved
Control Engineering �mega Drive-Line II 101
Baumüller Nürnber g GmbH 5.00005.02

BAPS Baumüller Drives Parallel Interface
Determination of t cyc K : →→→→ bits 3 and 4 to 7

Counter: →→→→ bit 3 = 0

tcyc K = 0.5 ms * “value from bits 4 to 7”

Minimum value: 0.5 ms * 1 = 0.5 ms
Example: 0.5 ms * 2 = 1.0 ms
Example: 0.5 ms * 3 = 1.5 ms
Example: 0.5 ms * 4 = 2.0 ms

etc.
Minimum value: 0.5 ms * 15 = 7.5 ms

Time slice: →→→→ bit 3 = 1

tcyc K = 0.5 ms * 2 “value from bits 4...7”

Minimum value: 0.5 ms * 21 = 1 ms

Example: 0.5 ms * 22 = 2 ms

Example: 0.5 ms * 23 = 4 ms

Example: 0.5 ms * 24 = 8 ms

Example: 0.5 ms * 25 = 16 ms
etc.

Maximum value: 0.5 ms * 215 = 16384 ms

After every cycle time tcyc K, must call FB BAPS_PD_COMM24 in the �me-
ga Drive-Line II (e.g. in an event task to the „BAPS process data“ event or
in an event task to the SYNC signal network (CANsync) event).

If (BAPS) process data communication is triggered via a synchronization si-
gnal or you use the Synchronized position reference value specification mo-
de, you must set parameter 167 (Sync.-Slot) to tcyc K in µs.

NOTE

NOTE
102 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

BAPS Baumüller Drives Parallel Interface
Determination of t cyc P : bits 1 and 2:

Time slice procedure (up to 2 reference values and 4 actual values):

tcyc P x = (2 * tcyc K) * 2x ; x: Referenced/actual value number at FB: 0 to 1 or 3 (in-
puts ud_WR_VALUEx and outputs ud_RD_VALUEx)

tcyc P 0 = (2 * tcyc K) * 20 = 2 * tcyc K = 1 ms (where tcyc K = 0.5 ms)

tcyc P 1 = (2 * tcyc K) * 21 = 4 * tcyc K = 2 ms (where tcyc K = 0.5 ms)

tcyc P 2 = (2 * tcyc K) * 22 = 8 * tcyc K = 4 ms (where tcyc K = 0.5 ms)

tcyc P 3 = (2 * tcyc K) * 23 = 16 * tcyc K = 8 ms (where tcyc K = 0.5 ms)

tcyc P 0 = (2 * tcyc K) * 20 = 2 * tcyc K = 4 ms (where tcyc K = 0.5 ms)

tcyc P 1 = (2 * tcyc K) * 21 = 4 * tcyc K = 8 ms (where tcyc K = 2 ms)

tcyc P 2 = (2 * tcyc K) * 22 = 8 * tcyc K = 16 ms (where tcyc K = 2 ms)

tcyc P 3 = (2 * tcyc K) * 23 = 16 * tcyc K = 32 ms (where tcyc K = 2 ms)

Two reference values and four actual values in the same cycle:

tcyc P 0 = tcyc P 1 = tcyc P 2 = tcyc P 3 = tcyc K

Input us_MODE:

Using us_MODE = 0, you state that FB BAPS_PD_COMM24 is called in a cyclical main program or in
an event task to any event (e.g. to the SYNC signal network (CANsync) event).

Using us_MODE = 1 you state that FB BAPS_PD_COMM24 is called in an event task to the „BAPS pro-
cess data“ event (see description of FB BAPS_INIT, input i_EVENT).

If us_MODE is not assigned, this yields the presetting us_MODE = 0 (use of FB BAPS_PD_COMM24
in the cyclical main program or in an event task to any event).

Inputs ud_WR_VALUE0, ud_WR_VALUE3:

The reference values are connected to inputs ud_WR_VALUE0 and ud_WR_VALUE1 whose parameter
numbers were stated at FB BAPS_INIT (inputs u_WR_PAR_NR0 and u_WR_PAR_NR1) at initialization

of BAPS process data communication. a)

Input x_EN:

Communication is enabled by means of x_EN = TRUE. The default setting is x_EN = TRUE, i.e. com-
munication is enabled.

For inputs t_RE_INIT_TIME and x_RE_INIT_START, see below.

a) Function two reference values and four actual values in the same cycle is implemented from
V-controller software version 000309 onwards.
Control Engineering �mega Drive-Line II 103
Baumüller Nürnber g GmbH 5.00005.02

BAPS Baumüller Drives Parallel Interface
Output w_STATUSWORD:

At output w_STATUSWORD, the system outputs the V-controller's status word.

Output w_STATUS_REG:

With bit 0 set, output w_STATUS_REG (BAPS status register) indicates that the V-controller is synchro-
nized to the Trigger Controller signal. (See “The Interrupt Sources and Trigger Signals” on page 52.)

Outputs ud_RD_VALUE0 to ud_RD_VALUE3:

The actual values are output at outputs ud_RD_VALUE0 to ud_RD_VALUE3 whose parameter numbers
were stated at FB BAPS_INIT (inputs u_RD_PAR_NR0 to u_RD_PAR_NR3) at initialization of BAPS

process data communication. a)

Output b_SL_QUIT:

The system reports at output b_SL_QUIT the V-controller acknowledgement after communication has
been completed.

For outputs x_RE_INIT_ERR und x_RE_INIT_OK, see below.

Outputs x_ERR, b_ERR:

If an error occurs, the system sets error bit x_ERR to TRUE and outputs error byte b_ERR.

a) Function two reference values and four actual values in the same cycle is implemented from
V-controller software version 000309 onwards.

Value
b_SL_QUIT Meaning

16#00 No meaning
16#01 Reference value has been read/actual value has been written
16#02 Configuration/initialization has been carried out correctly
16#03 Reinitialization is active

16#04 – 16#7F Reserved
16#80 An uninterpretable command has been received
16#81 Configuration/initialization has not been carried out
16#82 Actual value cannot be read
16#83 Reference value cannot be written
16#84 Reserved
16#85 Reserved
16#86 Reference value cannot be written (reinitializing)
16#87 Actual value cannot be read (reinitializing)

16#88 – 16#FE Reserved
16#FF No meaning
104 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

BAPS Baumüller Drives Parallel Interface
Error byte b_ERR:

From V-controller software version 000309 onwards, it is to possible to reinitialize or reparameterize the
BAPS process data configuration during ongoing process data communication. For this, the system
must run through FB BAPS_INIT in a cyclical task in us_MODE = 2. For more information on this topic,
refer to the description of FB BAPS_INIT and see below.

Input t_RE_INIT_TIME:

At input t_RE_INIT_TIME, you state the monitoring time for reinitializing. The default setting is
t_RE_INIT_TIME = 1 s. If reinitializing is not completed within this time, the system sets bit 1 in error byte
b_ERR.

Input x_RE_INIT_START:

At input x_RE_INIT_START, reinitializing is started by means of x_RE_INIT_START = TRUE.

You state a timeout at reinitializing by means of b_ERR = 16#02 and signal it by the set error bit, x_ERR.
If you state an invalid parameter number at reinitializing, the system does not set a bit in error byte
b_ERR and error bit x_ERR stays FALSE. The system reports that an invalid parameter number has
been stated by means of b_SL_QUIT = 16#86 or b_SL_QUIT = 16#87 and x_RE_INIT_ERR = TRUE.

Function of reinitializing:

From V-controller software version 000309 onwards, you can change (i.e. reinitialize) the parameter
numbers of the reference and/or actual values during ongoing process data communication (see input
w_COMMAND_REG, selection of reference and actual value transfer = 2 reference and 4 actual values
in the same cycle).

During the reinitialization stage, the reference and actual values that are to be reinitialized are not defi-
ned. The reference and actual values that are not reinitialized stay valid.

Sequence of reinitializing:

For reinitializing BAPS process data communication, you must tell the V-controller which parameter
numbers are to be changed and how they are to be changed. To do this, you call FB BAPS_INIT in
us_MODE = 2.

One instance of FB BAPS_INIT is available for this in a POU that is called
cyclically and not in the event task in which FB BAPS_PD_COMM24 is cal-
led.

Bit Number Error
0 Output b_SL_QUIT ≠ BYTE#16#01
1 Timeout (reinitializing)

2 – 7 Reserved

NOTE
Control Engineering �mega Drive-Line II 105
Baumüller Nürnber g GmbH 5.00005.02

BAPS Baumüller Drives Parallel Interface
FB BAPS_INIT, inputs u_WR_PAR_NR0, u_WR_PAR_NR1:

At inputs u_WR_PAR_NR0 and u_WR_PAR_NR1 of FB BAPS_INIT, you state the new parameter num-
bers for reference value 0 and reference value 1.

FB BAPS_INIT, inputs u_RD_PAR_NR0 to u_RD_PAR_NR3:

At inputs u_RD_PAR_NR0 to u_RD_PAR_NR3 of FB BAPS_INIT, you state the new parameter num-
bers for actual value 0 to actual value 3.

If parameter numbers do not need to be changed, you state the previous parameter number.

If one of inputs u_WR_PAR_NR0, u_WR_PAR_NR1, u_RD_PAR_NR0, u_RD_PAR_NR1,
u_RD_PAR_NR2, or u_RD_PAR_NR3 is not assigned, you must enter 0 as the parameter number.

FB BAPS_INIT, input x_EN:

If the inputs are interconnected appropriately, you use x_EN = TRUE (of FB BAPS_INIT) to start entry
of the parameter numbers in the appropriate registers of the BAPS interface. It is only necessary to run
through FB BAPS_INIT once for this.

In us_M O D E = 2 , FB B A P S_IN IT does no t issue any O K or e rro r m essages!

Input x_RE_INIT_TRUE, output x_RE_INIT_OK:

After FB BAPS_INIT has been run through, the system starts reinitializing at FB BAPS_PD_COMM24
with x_RE_INIT_START = TRUE. From now on, the values of the reference and actual value parameters
to be reinitialized are not defined until the end of the reinitialization stage is signalled by x_RE_INIT_OK
= TRUE (or x_RE_INIT_ERR = TRUE).

In the case of an OK (x_RE_INIT_OK = TRUE), the system transfers the values of reference values 0
and 1 to the reinitialized reference value parameters in the V-controller and "fetches" the values of actual
values 0 to 3 from the reinitialized actual value parameter number in the V-controller.All the values are
defined again.

Output x_RE_INIT_ERR, b_ERR, b_SL_QUIT:

In the case of an error, the system signals a timeout after time x_RE_INIT_TIME expires by a set bit 1
in error byte b_ERR (of FB BAPS_PD_COMM24) and by x_ERR = TRUE.

If the case of one (or two) invalid reference value parameter number(s), the system outputs the value
16#86 at output b_SL_QUIT and sets x_RE_INIT_ERR = TRUE.

If the case of one (or more) invalid actual value parameter number(s), the system outputs the value
16#87 at output b_SL_QUIT and sets x_RE_INIT_ERR = TRUE.

If the case of one (or two) invalid reference value parameter number(s) and one (or more) invalid actual
value parameter number(s), the system outputs the value 16#86 at output b_SL_QUIT and sets
x_RE_INIT_ERR = TRUE.

NOTE
106 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

BAPS Baumüller Drives Parallel Interface
6.2.6 BAPS_PD_COMM8

Description

You can use this function block for BAPS to initialize process data communication between the V-con-
troller and the �mega Drive-Line II via the BAPS interface

The system sends the reference values and the control word to the V-controller; the V-controller receives
and outputs the actual values and the status word.

Input us_HW_TYPE:

At input us_HW_TYPE you state with us_HW_TYPE = 0 that FB BAPS_PD_COMM8 is used in the
�mega Drive-Line II (us_HW_TYPE ≠ 0 is not implemented).

Parameter input Data type Description
us_HW_TYPE USINT

0
�mega Drive-Line II

w_CONTROLWORD WORD Control word
w_COMMAND_REG WORD Control register
us_MODE USINT

0, 1
Mode

ud_WR_VALUE0 UDINT Reference value 0
ud_WR_VALUE1 UDINT Reference value 1
ud_WR_VALUE2 UDINT Reference value 2
ud_WR_VALUE3 UDINT Reference value 3
ud_WR_VALUE4 UDINT Reference value 4
ud_WR_VALUE5 UDINT Reference value 5
ud_WR_VALUE6 UDINT Reference value 6
ud_WR_VALUE7 UDINT Reference value 7
x_EN BOOL Enable

Parameter output Data type Description
w_STATUSWORD WORD Status word
w_STATUS_REG WORD Status register
ud_RD_VALUE0 UDINT Actual value 0
ud_RD_VALUE1 UDINT Actual value 1
ud_RD_VALUE2 UDINT Actual value 2
ud_RD_VALUE3 UDINT Actual value 3
ud_RD_VALUE4 UDINT Actual value 4
ud_RD_VALUE5 UDINT Actual value 5
ud_RD_VALUE6 UDINT Actual value 6
ud_RD_VALUE7 UDINT Actual value 7
b_SL_QUIT BYTE Controller acknowledgement
b_ERR BYTE Error byte
x_ERR BOOL Error bit
Control Engineering �mega Drive-Line II 107
Baumüller Nürnber g GmbH 5.00005.02

BAPS Baumüller Drives Parallel Interface
If input us_HW_TYPE is not assigned, this yields the presetting
us_HW_TYPE=0 (FB BAPS_PD_COMM8 in the �mega Drive-Line II).

Input w_CONTROLWORD:

At input w_CONTROLWORD, you state the control word that is to be sent to the V-controller.

Input w_COMMAND_REG:

The following take place at input w_COMMAND_REG:

– selection of reference and actual value transfer,

– selection of the method of calculating the communications cycle time of reference and actual va-
lue transfer as well as

– setting of the communications cycle time of reference and actual value transfer

Time slice of the V-controller for cyclical communication: 500 µs

tcyc K - Time between two communications via the BAPS

tcyc P - Time with which the system updates the parameters (reference and actual values) at position x
(inputs ud_WR_VALUEx and outputs ud_RD_VALUEx)

NOTE

Bit No. Meaning
0 Reserved

1, 2 Bit 2
0
0
1
1

Bit 1
0
1
0
1

Selection of reference and actual value transfer (→ tcyc P)
Time slice procedure
direct specification of reference/actual value no.
Two reference and two (four) actual values in the same cycle
Reserved

3 Bit 3

0
1

Selection of the method of calculating the communications cycle time of
reference and actual value transfer (→ tcyc K)
Counter
Time slice

4, 5, 6, 7
1…15:

1…15:

Bit 3 = 0:
Value of the counter
The system internally increments a counter every 500µs. If the reading of
this counter matches the value that is formed from bits 4 to 7, the system
carries out process data communication (assuming that an event from the
V-controller is pending).

Bit 3 = 1:
Number of the time slice
Process data communication takes place in each case every 500µs after
the time slice whose number is entered in bits 4 to 7 (assuming that an
event from the V-controller is pending).

8 ... 15 Reserved
108 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

BAPS Baumüller Drives Parallel Interface
Determination of t cyc K : →→→→ bits 3 and 4 to 7

Counter: →→→→ bit 3 = 0

tcyc K = 0.5 ms * “value from bits 4 to 7”

Minimum value: 0.5 ms * 1 = 0.5 ms
Example: 0.5 ms * 2 = 1.0 ms
Example: 0.5 ms * 3 = 1.5 ms
Example: 0.5 ms * 4 = 2.0 ms

etc.
Minimum value: 0.5 ms * 15 = 7.5 ms

Time slice: →→→→ bit 3 = 1

tcyc K = 0.5 ms * 2 “value from bits 4...7”

Minimum value: 0.5 ms * 21 = 1 ms

Example: 0.5 ms * 22 = 2 ms

Example: 0.5 ms * 23 = 4 ms

Example: 0.5 ms * 24 = 8 ms

Example: 0.5 ms * 25 = 16 ms
etc.

Maximum value: 0.5 ms * 215 = 16384 ms

After every cycle time tcyc K, must call FB BAPS_PD_COMM8 in the �mega
Drive-Line II (e.g. in an event task to the „BAPS process data“ event or in an
event task to the SYNC signal network (CANsync) event).

If (BAPS) process data communication is triggered via a synchronization si-
gnal or you use the Synchronized position reference value specification mo-
de, you must set parameter 167 (Sync.-Slot) to tcyc K in µs.

NOTE

NOTE
Control Engineering �mega Drive-Line II 109
Baumüller Nürnber g GmbH 5.00005.02

BAPS Baumüller Drives Parallel Interface
Determination of t cyc P : bits 1 and 2:

Time slice procedure (up to 8 reference values and 8 actual values):

tcyc P x = (2 * tcyc K) * 2x ; x: Referenced/actual value number at FB: 0 to 7 (inputs
ud_WR_VALUEx and outputs ud_RD_VALUEx)

tcyc P 0 = (2 * tcyc K) * 20 = 2 * tcyc K = 1 ms (where tcyc K = 0.5 ms)

tcyc P 1 = (2 * tcyc K) * 21 = 4 * tcyc K = 2 ms (where tcyc K = 0.5 ms)

tcyc P 2 = (2 * tcyc K) * 22 = 8 * tcyc K = 4 ms (where tcyc K = 0.5 ms)

tcyc P 3 = (2 * tcyc K) * 23 = 16 * tcyc K = 8 ms (where tcyc K = 0.5 ms)

tcyc P 4 = (2 * tcyc K) * 24 = 32 * tcyc K = 16 ms (where tcyc K = 0.5 ms)

tcyc P 5 = (2 * tcyc K) * 25 = 64 * tcyc K = 32 ms (where tcyc K = 0.5 ms)

tcyc P 6 = (2 * tcyc K) * 26 = 128 * tcyc K = 64 ms (where tcyc K = 0.5 ms)

tcyc P 7 = (2 * tcyc K) * 27 = 256 * tcyc K = 128 ms (where tcyc K = 0.5 ms)

tcyc P 0 = (2 * tcyc K) * 20 = 2 * tcyc K = 4 ms (where tcyc K = 2 ms)

tcyc P 1 = (2 * tcyc K) * 21 = 4 * tcyc K = 8 ms (where tcyc K = 2 ms)

tcyc P 2 = (2 * tcyc K) * 22 = 8 * tcyc K = 16 ms (where tcyc K = 2 ms)

tcyc P 3 = (2 * tcyc K) * 23 = 16 * tcyc K = 32 ms (where tcyc K = 2 ms)

tcyc P 4 = (2 * tcyc K) * 24 = 32 * tcyc K = 64 ms (where tcyc K = 2 ms)

tcyc P 5 = (2 * tcyc K) * 25 = 64* tcyc K = 128 ms (where tcyc K = 2 ms)

tcyc P 6 = (2 * tcyc K) * 26 = 128 * tcyc K = 256 ms (where tcyc K = 2 ms)

tcyc P 7 = (2 * tcyc K) * 27 = 256 * tcyc K = 512 ms (where tcyc K = 2 ms)

Two reference values and four actual values in the same cycle:

tcyc P 0 = tcyc P 1 = tcyc P 2 = tcyc P 3 = tcyc K

Input us_MODE:

Using us_MODE = 0, you state that FB BAPS_PD_COMM8 is called in a cyclical main program or in an
event task to any event (e.g. to the SYNC signal network (CANsync) event).

Using us_MODE = 1 you state that FB BAPS_PD_COMM8 is called in an event task to the „BAPS pro-
cess data“ event (see description of FB BAPS_INIT, input i_EVENT).

If us_MODE is not assigned, this yields the presetting us_MODE = 0 (use of FB BAPS_PD_COMM8 in
the cyclical main program or in an event task to any event).

Inputs ud_WR_VALUE0 to ud_WR_VALUE7:

The reference values are connected to inputs ud_WR_VALUE0 to ud_WR_VALUE7 whose parameter
numbers were stated at FB BAPS_INIT (inputs u_WR_PAR_NR0 to u_WR_PAR_NR7) at initialization
of BAPS process data communication.

Input x_EN:

Communication is enabled by means of x_EN = TRUE. The default setting is x_EN = TRUE, i.e. com-
munication is enabled.
110 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

BAPS Baumüller Drives Parallel Interface
Output w_STATUSWORD:

At output w_STATUSWORD, the system outputs the V-controller's status word.

Output w_STATUS_REG:

With bit 0 set, output w_STATUS_REG (BAPS status register) indicates that the V-controller is synchro-
nized to the Trigger Controller signal (See “The Interrupt Sources and Trigger Signals” on page 52.)

Outputs ud_RD_VALUE0 to ud_RD_VALUE7:

The actual values are output at outputs ud_RD_VALUE0 to ud_RD_VALUE7 whose parameter numbers
were stated at FB BAPS_INIT (inputs u_RD_PAR_NR0 to u_RD_PAR_NR7) at initialization of BAPS
process data communication.

Output b_SL_QUIT:

The system reports at output b_SL_QUIT the V-controller acknowledgement after communication has
been completed.

Outputs x_ERR, b_ERR:

If an error occurs, the system sets error bit x_ERR to TRUE and outputs error byte b_ERR.

Error byte: b_ERR

Value
b_SL_QUIT Meaning

16#00 No meaning
16#01 Reference value has been read/actual value has been written
16#02 Configuration/initialization has been carried out correctly

16#03 – 16#7F Reserved
16#80 An uninterpretable command has been received
16#81 Configuration/initialization has not been carried out
16#82 Actual value cannot be read
16#83 Reference value cannot be written

16#84 – 16#FE Reserved
16#FF No meaning

Bit
number Error

0 Output b_SL_QUIT ≠ 16#01
1 – 7 Reserved
Control Engineering �mega Drive-Line II 111
Baumüller Nürnber g GmbH 5.00005.02

BAPS Baumüller Drives Parallel Interface
6.2.7 BAPS_PD_CONTROL

Description

You can use this function block for BAPS to check the call of process data communication.

The system monitors the correct sequence of process data communication in FB BAPS_PD_COMM2,
FB BAPS_PD_COMM24 or FB BAPS_PD_COMM8 (referred to from now on as BAPS_PD_COMMxx).

On the BAPS interface, FB BAPS_PD_COMMxx changes a specific (timeout) register at every call of
BAPS process data communication. Monitoring the change in this register makes it possible to monitor
the call of BAPS process data communication.

The change in this register is not dependent on the result of communication!

Input x_RESET:

You can use x_RESET = TRUE to reset BAPS_PD_CONTROL.

Input t_TIME:

At input t_TIME, you set the monitoring time. If input t_TIME is not assigned, this yields a presetting of
3 s.

Output x_ERR:

x_ERR = TRUE indicates that the timeout register of the BAPS interface that was mentioned above has
not been changed again within the monitoring time (t_TIME). This can be due to FB
BAPS_PD_COMMxx not having been called or to FB BAPS_PD_COMMxx not having triggered the
event task.

Output x_ERR is TRUE if no process data communication via the BAPS was
carried out within t_TIME.
FB BAPS_PD_CONTROL is not used in an event task to the BAPS process
data event (see description of FB BAPS_INIT, FB BAPS_PD_COMMxx).

Parameter input Data type Description
x_RESET BOOL Reset
t_TIME TIME Monitoring time

Parameter output Data type Description
x_ERR BOOL Error bit

NOTE
112 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

BAPS Baumüller Drives Parallel Interface
6.2.8 BAPS_SD_CONTROL

Description

You can use this function block for BAPS to read or write a requirements data value (parameter) of the
V-controller via the BAPS interface.

Data is exchanged and FB BAPS_SD_CONTROL is controlled via a structure that FBs
BAPS_PAR_READ and/or BAPS_PAR_WRITE read and write to.

FB BAPS_SD_CONTROL uses library BM_TYPES_20bd00 or above.

FB BAPS_SD_CONTROL carries out requirements data communication via the BAPS interface. The
jobs for communication are received by FB BAPS_SD_CONTROL from FBs BAPS_PAR_READ and/or
BAPS_PAR_WRITE.

The system passes on FB BAPS_PAR_READ's read parameter job to the V-controller and returns the
data that the V-controller returns to FB BAPS_PAR_READ.

The system passes on FB BAPS_PAR_WRITE's write parameter job to the V-controller and returns the
result of communication that the V-controller returns to FB BAPS_PAR_WRITE.

The system displays at the error outputs errors in communication via the BAPS interface as well as in
data exchange with FBs BAPS_PAR_READ and BAPS_PAR_WRITE.

Input/output _BAPS_SD_DATA:

At _BAPS_SD_DATA, you must connect a global variable of data type BAPS_BMSTRUCT.

Example:

_BAPS_SD_DATEN : BAPS_BMSTRUCT;

Where:

_BAPS_SD_DATEN is the variable name with the data type short designati-
on "_" for STRUCT

BAPS_BMSTRUCT is the data type

NOTE

Parameter input Data type Description
_BAPS_SD_DATA BAPS_BMSTRUCT Communications data
x_RESET BOOL Reset
t_TIME TIME Monitoring time

Parameter output Data type Description
_BAPS_SD_DATA BAPS_BMSTRUCT Communications data
b_ERR BYTE Error byte
x_ERR BOOL Error bit
Control Engineering �mega Drive-Line II 113
Baumüller Nürnber g GmbH 5.00005.02

BAPS Baumüller Drives Parallel Interface
Data is exchanged via this variable with FBs BAPS_PAR_READ and BAPS_PAR_WRITE. This variable
is connected with the FBs of requirements data communication of the BAPS – this also applies if you
use FBs BAPS_PAR_READ and/or BAPS_PAR_WRITE several times.

Input x_RESET:

You can use x_RESET = TRUE to reset BAPS_SD_CONTROL. This is necessary if there were faults in
communication via the BAPS interface or data exchange with FBs BAPS_PAR_READ and
BAPS_PAR_WRITE. FBs BAPS_PAR_READ and/or BAPS_PAR_WRITE must also be reset so that
data exchange with these FBs can be restarted.

Input t_TIME:

At input t_TIME, you set the monitoring time. If input t_TIME is not assigned, this yields a presetting of
3 s.

Outputs x_ERR, b_ERR:

If an error occurs, the system sets error bit x_ERR to TRUE and outputs error byte b_ERR.

Error byte b_ERR:

The �mega Drive-Line II writes the master semaphore and the V-controller
writes the slave semaphore.

Bit Number Error
0, 1 Data exchange with FBs BAPS_PAR_READ / BAPS_PAR_WRITE is

disturbed
2 BAPS interface:

Timeout, master or slave semaphore is not equal to 0, communication
start not possible

3 BAPS interface:
Timeout, master or slave semaphore is not equal to 1, communication
interrupted

4 BAPS interface:
Timeout, master or slave semaphore is not equal to 0, communication not
completed

5 BAPS interface:
General operating system or communications error

6 BAPS interface: format error
7 Reserved

NOTE
114 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
7 CANSYNC

The function blocks that are mentioned in this chapter are located in libraries
SYSTEM1_DLII_20bd00 (or above), SYSTEM2_DLII_20bd00 (or above)
and CANsync_DLII_20db00 (or above).
The data types that are mentioned in this chapter are defined in library
BM_TYPES_20bd00 (or above) .
To program the CANsync under PROPROG wt II, you integrate these libra-
ries into a project.

7.1 General

7.1.1 Overview

The CANsync field bus was developed by Baumüller Nürnberg GmbH. The aim of replacing mechanical
line shafts by an electronic leading axle was achieved by making available to all the connected drives
(⇒ CANsync slaves) the leading axle value at the same instant (time-synchronous transfer).

The CAN bus represents the physical basis. The bus was enhanced by adding a synchronization signal
(SYNC signal). The SYNC signal is transferred on two additional wires in the CAN cable. The SYNC si-
gnal is for hardware synchronizing the CANsync master with all the CANsync slaves that are located on
the CANsync bus. By contrast with the CAN bus, this makes it possible to send and receive message
frames at defined instants. The system achieves a guaranteed, high data throughput rate, which, in ad-
dition, has a fixed time reference on the CANsync bus.

The CANsync bus is a master-slave bus with one CANsync master and up to 32 CANsync slaves. To
differentiate the CANsync slaves each one is assigned a slave number. You specify the slave number
by setting DIP switches (See “Setting the Slave Number” on page 20.).

NOTE
Control Engineering �mega Drive-Line II 115
Baumüller Nürnber g GmbH 5.00005.02

CANsync
Figure 6-1: CANsync bus, CANsync master with CANsync slaves 0, 1, .., 30, 31

Clustering was implemented to extend the CANsync bus to more than 32 CANsync slaves. Clustering
means that you can integrate new CANsync networks starting out from a CANsync slave on the CAN-
sync bus. This represents the CANsync master for the cluster. This also makes it possible to implement
following axles that are themselves used as the leading axle for the drives located in the cluster.

The SYNC signal is available for synchronization to every node of the CANsync bus, including the ones
in the clusters; each node knows the instant of application of specific message frames!
116 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
Figure 6-2: Example of the structure of a CANsync cluster.

The theore tica l m axim um num ber o f nodes is 3216. The number of nodes is , however, lim ited to 65535,
s ince you must assign a CAN sync num ber (a unique identification o f the node fo r the C ANsync bus) in ad-
d ition to the s lave num ber that you set us ing D IP sw itches (See “Setting the S lave N um ber” on page 20 .).

The CANsync synchronization signal (SYNC signal)

� is a specified hardware signal,

� is generated on the CANsync master's CANsync interface module,
Control Engineering �mega Drive-Line II 117
Baumüller Nürnber g GmbH 5.00005.02

CANsync
� is transferred via two additional lines on the CANsync bus,

� is also transferred to the clusters.

Depending on the operating mode and the transmission speed (baud rate) on the CANsync bus, the sy-
stem generates the SYNC signal in a specific raster of the CANsync cycle time (the time between two
falling edges of the SYNC signal).

The message frame traffic of the CANsync bus is carried out in a specified sequence such that individual
message frames are always in defined time windows, which are also known as channels. The following
channels are defined in CANsync and are sent by the CANsync master:

� Reference value message frames; WRC1 and WRC2 (Wr iteChannel)

� Broadcast message frames; CC (CommandChannel)

� Parameter message frames, CC

� Upload/download message frames, CC

The CANsync slaves must adapt their responses to the CANsync master's time scheme; the following
channels are available to them:

� Actual value message frames, RDC1 and RDC 2 (ReadChannel)

� parameter response message frames, RC (ResponseChannel)

� Upload/download response message frames, RC

We will also refer from now on to WRC1 and WRC2 as reference value
channel 1 and reference value channel 2.
We will also refer from now on to RDC1 and RDC2 as actual value channel
1 and actual value channel 2.
We will also refer to CC from now on as command channel.
We will also refer to RC from now on as response channel.

Baud rate CANsync cycle time

500 kbps 2 ms

250 kbps 4 ms

125 kbps 8 ms

NOTE
118 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
The following example shows the time scheme of the respective message frames with a transmission
speed of 500 kbps (CANsync interval with a CANsync cycle time of 2 ms):

Figure 6-3: Time scheme of the CANsync interval with a transmission speed of 500 kbps

The instants for the channels are listed in the table below in dependence on the baud rate:

Table: Assignment of transmission speed (baud rate), CANsync cycle time tSYNC in ms and maximum
bus length in m. The quoted times are maximum values.

Sequence in principle of communication

Process data communication

Reference value channels WRC1 and WRC2 (WriteChannel), actual value channels RDC1 and RDC2
(ReadChannel) and command channel CC (CommandChannel) are used for process data communica-
tion. In every CANsync cycle, the system sends them in the specified sequence.

The master sends the reference value message frames on channels WRC1 and WRC2. In each case,
they have a defined length of useful data of 64 bits � 8 bytes � 4 words!

All the slaves/nodes receive them with each slave deciding on its own initiative and on the basis of its
set configuration (→ Mapping) the data that represents reference values for it. You make this setting for
the V-controller slaves in the supplementary board parameters (see the user guide of the CANsync-In-
terface option board), for the �mega slaves in the mapping to be programmed.

The system adds to the reference value message frame an additional piece of information indicating
which slave in the same CANsync cycle is to send its prepared actual value message frame back to the
master. This means that it is possible to receive the actual value message frames of a maximum of two
slaves per CANsync cycle, since only two actual value message frames are available (in channels RDC1
and RDC2). These message frames also each have useful data amounting to 64 bits � 8 bytes �
4 words.

Baud
rate

CANsync
cycle time

in µs
tSYNC

tWRC1 tRDC1 tWRC2 tRDC2 tCC tRC Maximum
CANsync

bus length

500 kbps 2000 730 1060 1320 1630 1890 460 134 m

250 kbps 4000 1430 2100 2620 3290 3810 900 300 m

125 kbps 8000 3020 4310 5350 6640 7680 1920 600 m
Control Engineering �mega Drive-Line II 119
Baumüller Nürnber g GmbH 5.00005.02

CANsync
You can also program automatic polling of all the slaves in sequence.

Usually, the system only polls one CANsync slave per CANsync cycle for its actual values, which means
that the actual value message frames on channels RDC1 and RDC2 come from one slave.

With a maximum bus configuration with 32 slaves (with no additional clu-
sters!), you need at least 16 CANsync cycles to have available all the cur-
rent actual values in the master, if two slaves per CANsync cycle return their
actual values to the master!

With the V-controller, the process data includes the control word and the status word. Whereas the sy-
stem enters the status word like any other ordinary actual value in actual value message frames 1 or 2
in dependence on the supplementary board parameter setting, it must treat the control word separately.
It is defined as a broadcast command that is sent in the CC.

Mapping

In the following section, we will describe the principle of mapping using the CANsync master interface
module as an example. Mapping is carried out in a similar way for the CANsync slave interface module
(see also FBs CANsync_PD_CFG_SL or CANsync_PD_CFG_READ_SL). For V-controller slaves,
mapping is carried out in the supplementary board parameters (see the user guide of the CANsync-In-
terface option board).

64 bits are available in each case as the useful data for reference value message frames 1 and 2. This
yields the following options for reference value setting by the master:

4 word reference values (16 bits each)

2 doubleword reference values (32 bits each)

1 doubleword reference value (32 bits) and 2 word reference values (16 bits each)

The system enters the reference values in a field (array) that is connected at FB
CANsync_PD_COMM_MA at process data communication. It consists of eight 32 bit entries:

These reference values are buffered in the CANsync interface module's communication RAM as dou-
blewords. This makes it necessary to tell the CANsync interface module which reference values and

NOTE

Reference values for
reference value message
frame 1

Reference value 0 highword Reference value 0 lowword

Reference value 1 highword Reference value 1 lowword

Reference value 2 highword Reference value 2 lowword

Reference value 3 highword Reference value 3 lowword

Reference values for
reference value message
frame 2

Reference value 4 highword Reference value 4 lowword

Reference value 5 highword Reference value 5 lowword

Reference value 6 highword Reference value 6 lowword

Reference value 7 highword Reference value 7 lowword
120 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
which highword or lowword are to be used for the reference value message frame. You must make this
setting at function block CANsync_PD_CFG_MA. Since this setting does not generally change any mo-
re, users must make it during initialization of the CANsync bus.

Doubleword parameters in the V-controller must be transferred in the se-
quence:
First lowword, second highword (like the following examples).

Example:

You want to write a doubleword reference value as reference value 0 in reference value message frame
1 (in WRC1) and, in addition, two word reference values as reference value 2 and reference value 3:

Setting to make: a_WRC1 = [0, 0, 2, 3]

a_HL_WRC1 = [FALSE, TRUE, FALSE, FALSE]

The arrays that are used are connected to the inputs of FB CANsync_PD_CFG_MA. Array a_WRC1 de-
fines the positions of the reference values to be transferred, doubleword to reference value 0, word re-
ference values to reference values 2 and 3. Array a_HL_WRC1 tells the system whether it is to take the
highword (TRUE) or the lowword (FALSE) from communication RAM.

64 bits of useful data are also available for actual value message frames 1 and 2. This means that it is
possible to transfer:

4 word actual values (16 bits each)

2 doubleword actual values (32 bits each)

1 doubleword actual value (32 bits) and 2 word actual values (16 bits each)

The system also saves these actual values in communication RAM as doublewords, which means that,
here too, you must make an assignment.

NOTE

Reference value channel
WRC1 with reference value
message frame 1

Reference value 0 highword Reference value 0 lowword

---- ----

---- Reference value 2 lowword

---- Reference value 3 lowword

Actual values from actual
value message frame 1

Actual value 0 highword Actual value 0 lowword

Actual value 1 highword Actual value 1 lowword

Actual value 2 highword Actual value 2 lowword

Actual value 3 highword Actual value 3 lowword
Control Engineering �mega Drive-Line II 121
Baumüller Nürnber g GmbH 5.00005.02

CANsync
Example:

You want to read from actual value message frame 1 (in RDC1) a doubleword actual value as actual
value 0 (position in the message frame words 0 and 1) and to read a second doubleword actual value
(words 2 and 3) as actual value 2:

Setting to make: a_RDC1 = [0, 0, 2, 2]

a_HL_RDC1 = [FALSE, TRUE, FALSE, TRUE]

The arrays that are used are connected to the inputs of FB CANsync_PD_CFG_READ_MA. Array
a_RDC1 defines the positions of the actual values to be transferred, doubleword to actual value 0, dou-
bleword to actual value 2. Array a_HL_RDC1 tells the system whether it is to write the highword (TRUE)
or the lowword (FALSE) to communication RAM.

In the CANsync master, the system writes the actual values of the individual CANsync slaves to different
areas of communication RAM, with each CANsync slave being assigned its own area. This field compri-
ses 32 (since this is the maximum number of nodes without clusters) • 8 (since there are 8 actual values)
entries that each contain 32 bits (since they are doubleword actual values) of data.

Actual values from actual
value message frame 2

Actual value 4 highword Actual value 4 lowword

Actual value 5 highword Actual value 5 lowword

Actual value 6 highword Actual value 6 lowword

Actual value 7 highword Actual value 7 lowword

Actual value channel RDC1
with actual value message
frame 1

Actual value 0 highword Actual value 0 lowword

---- ----

Actual value 2 highword Actual value 2 lowword

---- ----
122 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
Figure 6-4: Entering actual values in the CANsync master's of the CANsync slaves communication RAM,
example for Slave 2

Since only one CANsync slave sends its actual values and possibly its status word in every CANsync
actual value message frame, all the other CANsync slaves can monitor these message frames. As a re-
sult, it is possible for these actual values to be used as reference values for one or more other CANsync
slaves. If this is what you want, you only need to make the setting in the mapping.

Summary of process data communication

In every CANsync interval, the CANsync master sends reference value message frames 1 and 2 and
(generally) uses the reference value message frames to request actual value message frames 1 and 2
from a CANsync slave.

All the CANsync slaves receive the CANsync master's reference value message frames and, after a cor-
responding request, send their actual value message frames to the CANsync master. You make the set-
ting in mapping of which reference values in the reference value message frames are relevant to the
CANsync slave. You also define there the combination of actual values that is to be entered in the actual
value message frame.

All the CANsync slaves can evaluate the actual value message frames of the other CANsync slaves that
the master requests.
Control Engineering �mega Drive-Line II 123
Baumüller Nürnber g GmbH 5.00005.02

CANsync
You configure the mappings using the following FBs:

a) In the �mega CANsync master:

b) In the �mega CANsync slave:

c) In the V-controller CANsync slave:

In the supplementary board parameters (see the user guide of the CANsync-Interface option
board)

Requirements Data

In the CANsync, requirements data communication is carried out via the CommandCannel (CC) and the
ResponseChannel (RC). In this connection, the CANsync master sends message frames on the com-
mand channel that trigger actions in one or more CANsync slaves.

Several message frames are available:

� broadcast message frames

� control word message frames (special case of a broadcast message frame)

� Parameter message frames

� Upload/download message frames

The CANsync slave sends its response on the response channel (RC); it can be

� parameter response message frames

� Upload/download response message frames.

CANsync_PD_CFG_MA
(FB is used once)

Mapping of reference value message frames
1 and 2 in the �mega CANsync master that
are to be sent

CANsync_PD_CFG_READ_MA
(FB is used per CANsync slave, a maxi-
mum of 32 times)

Mapping of the received actual value mes-
sage frames 1 and 2 of a CANsync slave

CANsync_PD_CFG_SL
(FB is used once)

Mapping of the received reference value mes-
sage frames 1 and 2 and of the actual value
message frames 1 and 2 to be sent in the
�mega CANsync slave

CANsync_PD_CFG_READ_SL
(FB is used per further CANsync slave, a
maximum of 31 times)

Mapping of the received actual value mes-
sage frames 1 and 2 of a CANsync slave in
the �mega CANsync slave
124 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
The CANsync master can send command message frames in every CAN-
sync interval. The CANsync slaves only respond following a request by the
CANsync master.

The system processes the various message frames on the command channel in a priority-based se-
quence:

Table: Priority specification of the message frames on the command channel (CC)

As a result of these priorities, you cannot send another message frame if a higher-priority one is being
transmitted. If you send the control word message frame in every CANsync interval, for example, you
can never transmit a parameter message frame or an upload/download message frame!

In each CANsync interval, it is only possible to send one of the following broadcast message frames:

a broadcast message frame to all the CANsync slaves or
a control word message frame to one CANsync slave or
a parameter message frame to one CANsync slave or
an upload/download message frame to one CANsync slave.

Assuming that there is no broadcast message frame to send, the system sends control word, parameter
or upload/download message frames to one CANsync slave in every CANsync interval.

In this connection, you can set in the CANsync master whether a message frame is to be sent to one
specific CANsync slave or if it is to be sent automatically to all the CANsync slaves in succession.

Since the maximum number of CANsync slaves (32 without a cluster) do not necessarily need to be pre-
sent, it is possible to tell the CANsync master the maximum slave number for sending the control word,
parameter, upload/download message frame and for requesting the actual value message frame. It is
made at function block CANsync_COMM_CONTROL_MA or CANsync_PD_COMM_MA.

7.1.2 Information on Programming

There are two CANsync interface modules (CANsync nodes 1 and 2) on the �mega Drive-Line II. They
are used to connect a CANsync bus to a CANsync bus of a sublevel. This forms a network with several
levels.

NOTE

Message frame type Priority

Broadcast message frame 0 Highest

Broadcast message frame 1 ↑↑↑↑
Broadcast message frame 2
Control word message frames
Parameter message frames ↓↓↓↓
Upload/download message
frames

Lowest
Control Engineering �mega Drive-Line II 125
Baumüller Nürnber g GmbH 5.00005.02

CANsync
Initialization:

If you use the �mega Drive-Line II as a CANsync master, you must initialize the CANsync interface mo-
dule on CANsync node 2 (hardware address: %MB3.200000) as the CANsync master.

After this, active operation on the CANsync master interface module is enabled.

Necessary FBs and their sequences at initialization as a CANsync master:

CANsync_SL_TYP_INIT

CANsync_INIT

CANsync_PD_CFG_MA

CANsync_PD_CFG_READ_MA (one per CANsync slave)

OPT_INIT

INTR_SET

CANsync_MODE_MA

If you use the �mega Drive-Line II as a CANsync slave, you must initialize the CANsync interface mo-
dule on CANsync node 1 (hardware address: %MB3.100000) as the CANsync slave.

After this, active operation on the CANsync slave interface module is enabled.

Necessary FBs and their sequences at initialization as a CANsync slave:

CANsync_INIT

CANsync_PD_CFG_SL

CANsync_PD_CFG_READ_SL (one per further CANsync slave)

OPT_INIT

INTR_SET

CANsync_MODE_SL

If you use the �mega Drive-Line II as a CANsync cluster, you must first initialize the CANsync interface
module on CANsync node 1 (hardware address: %MB3.100000) as the CANsync slave.

After this, the CANsync interface module on CANsync node 2 (hardware address: %MB3.200000) is in-
itialized as the CANsync master .

After this, active operation on the CANsync master interface module is enabled.

Necessary FBs and their sequences at initialization as a CANsync cluster:

CANsync_INIT

CANsync_PD_CFG_SL

CANsync_PD_CFG_READ_SL (one per further CANsync slave)

CANsync_SL_TYP_INIT

CANsync_INIT

CANsync_PD_CFG_MA

CANsync_PD_CFG_READ_MA (one per CANsync slave)

OPT_INIT

INTR_SET

CANsync_MODE_MA
126 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
Information on process data communication

The FBs of CANsync process data communication are placed in a POU that is assigned to the CANsync
event task. The FBs of process data communication must be called immediately after calling of the event
task so that reference values and/or actual values can be sent and/or received in the same call of the
event task.

If the �mega Drive-Line II is used as a CANsync master, the following FB must be called:

CANsync_PD_COMM_MA

If the �mega Drive-Line II is used as a CANsync slave, the following FB must be called:

CANsync_PD_COMM_SL

If the �mega Drive-Line II is used as a CANsync cluster, the FBs must be called in this sequence:

CANsync_PD_COMM_SL

CANsync_PD_COMM_MA
Control Engineering �mega Drive-Line II 127
Baumüller Nürnber g GmbH 5.00005.02

CANsync
7.2 Detailed Information on CANsync

This chapter contains detailed information on CANsync. You do not need
this information if you use the function blocks of library
CANsync_DLII_20bd00 or above for programming.

tRSPTO - Response Timeout: The time within which the CANsync slave must send a response during in-
itialization.

All the following timings are relative to a baud rate of 500 kbps.

Start-up and initialization

Starting characteristics are divided into the following steps:

� Initialization with FB CANsync_INIT:

After the initialization with FB CANsync_INIT is done, the CANsync master outputs the SYNC
signal with a 2-ms timing code and the "SYNC-Modus“ (SYNC mode) action command contai-
ning the data: “SYNC-Betrieb einschalten” (Activate SYNC operation) to all the CANsync slaves.
The CANsync slaves start to synchronize their control task to the SYNC signal.

The CANsync master uses the Parameter Lesen (read parameter) parameter command to re-
quest the status word from each CANsync slave that it expects on the CANsync bus.

The CANsync slave must respond with its parameter response within tRSPTO. The CANsync ma-
ster monitors whether the CANsync slave responds within this time.

The CANsync master does not yet output any reference values during synchronization.

� Change to activ mode

The function block CANsync_MODE_MA (input x_CANsync_RUN = TRUE) starts directly the
activ mode. At this time the reference values and the actual values will be transferred. Think on
that CANsync slaves need some time (some seconds) to synchronize to the SYNC-Signal. The

NOTE

Baud rate t RSPTO

500 kbps 600 µs

250 kbps 1100 µs

125 kbps 2100 µs

NOTE
128 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
V-controller status word include the information about the state of synchronizing (status word Bit
15 = TRUE).

If you like to transfer position set values, the application in CANsync master must wait until all
CANsync slaves are synchronized (all CANsync slaves have to be in "synchronized" status).
Other reference values or other modes of operation are allowed before all CANsync slaves are
in "synchronized" status.

Synchronized Status

In synchronized status, all the drives (�mega CANsync master, �mega CANsync slaves, V-controllers
CANsync slaves) in the same CANsync interval, i.e. all the CANsync slaves carry out processing in their
control tasks and apply the reference values at the same time.

The CANsync master sends its jobs in a defined sequence with assigned time windows. The CANsync
slaves must adapt their responses to this scheme (See “Overview” on page 115. and Figure 6-3).

The reference value that was received in the previous CANsync interval becomes active in the control
task of the V-controller 750 µs after the SYNC signal.

The CANsync master must send the next reference value message frame 1 by 730 µs after the SYNC
signal at the latest.

Synchronization loss with V-controller CANsync slaves

If the SYNC signal fails in a CANsync interval, the system still runs through the next CANsync interval.
In this case, the actual value message frame of the CANsync slaves can be omitted if it cannot be sent
with the necessary time precision.

If the SYNC signal fails for a settable time in a row, the CANsync slave is in the non-synchronized status.
The system reports a corresponding error in this case. Users can set the response (fast brake, controller
inhibit,...) in the V-controller via communication monitoring.

Reference value loss with V-controller CANsync slaves

If no new reference value is received in a CANsync interval, the CANsync slave carries out extrapolation
using the reference value that it received last.

In the case of a settable number of reference value dropouts in a row (ZK 26), the system reports a cor-
responding error (communication monitoring). Users can set the response (fast brake, controller inhi-
bit,...) in the V-controller.
Control Engineering �mega Drive-Line II 129
Baumüller Nürnber g GmbH 5.00005.02

CANsync
7.2.1 Structure of Message Frames

���� CANsync message frames

Message frame lengths are variable (0 to 8 data bytes). They result from the list above and in some ca-
ses are also dependent on the respective operating status.

���� Data format

The data is stored in the message frames in Intel format (low byte/high byte).

���� Status Word

A CANsync slave's status word indicates its drive status. The SYNC status must be displayed in the top-
most bit (15). If the bit is set, then the CANsync slave is synchronized.

Reference value channels

Reference value channel 1

On reference value channel 1, the CANsync master sends reference value message frame 1.

With this, the CANsync master transfers to all the CANsync slaves one or more reference values (up to
a maximum of four). Number NNNNNNN in the identifier indicates which CANsync slave must send its
actual value message frame 1 after reference value message frame 1.

<IDENTIFIER><SOLLWERTE>

<IDENTIFIER> ::= 0010NNNNNNN Identifier of reference value channel 1

<SOLLWERTE> ::= W_SOLL | DW_SOLL | W_DW_SOLL

<W_SOLL> ::= <W_SOLL_1> | <W_SOLL_1..2> | Word reference values only

<W_SOLL_1..3> | <W_SOLL_1..4>

<DW_SOLL> ::= <DW_SOLL_1> | <DW_SOLL_1..2> DWord reference values only

<W_DW_SOLL> ::= <DW_SOLL_1><W_SOLL_3> | Word and DWord reference values

<DW_SOLL_1><W_SOLL_3><W_SOLL_4>

<W_SOLL_1> ::= <Word> Word reference value 1 = CAN-DB 0..1

<W_SOLL_2> ::= <Word> Word reference value 2 = CAN-DB 2..3

<W_SOLL_3> ::= <Word> Word reference value 3 = CAN-DB 4..5

<W_SOLL_4> ::= <Word> Word reference value 4 = CAN-DB 6..7

<DW_SOLL_1> ::= <DWord> DWord reference value 1 = CAN-DB 0..3

<DW_SOLL_2> ::= <DWord> DWord reference value 2 = CAN-DB 4..7

CAN-DB: CAN data byte
130 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
Reference value channel 2

On reference value channel 2, the CANsync master sends reference value message frame 2.

With this, the CANsync master transfers up to four additional reference values on this reference value
channel.

The structure and function correspond to reference value channel 1. Reference value message frame 2
has a different identifier and assignment of reference values to reference value message frame 1. Word
reference values 5...8 and doubleword reference values 3...4 are assigned to reference value channel
2. Number NNNNNNN in the identifier indicates the slave number of the CANsync slaves that responds
with actual value message frame 2.

<IDENTIFIER> ::= 0011NNNNNNN Identifier of reference value channel 2

Actual value channels

Actual value channel 1

On actual value channel 1, the CANsync slave sends actual value message frame 1.

The identifier of reference value message frame 1 indicates which CANsync slave may send its actual
value message frame 1 as a direct response to the reference value 1 message frame.

<IDENTIFIER><ISTWERTE>

<IDENTIFIER> ::= 0110NNNNNNN NNNNNNN = CANsync slave number

<ISTWERTE> ::= W_IST | DW_IST | W_DW_IST

<W_IST> ::= <W_IST_1> | <W_IST_1..2> | Word actual values only

<W_IST_1..3> | <W_IST_1..4>

<DW_IST> ::= <DW_IST_1> | <DW_IST_1..2> DWord actual values only

<W_DW_IST> ::= <DW_IST_1><W_IST_3> | Word and DWord actual values

<DW_IST_1><W_IST_3><W_IST_4>

<W_IST_1> ::= <Word> Word actual value 1 = CAN-DB 0..1

<W_IST_2> ::= <Word> Word actual value 2 = CAN-DB 2..3

<W_IST_3> ::= <Word> Word actual value 3 = CAN-DB 4..5

<W_IST_4> ::= <Word> Word actual value 4 = CAN-DB 6..7

<DW_IST_1> ::= <DWord> DWord actual value 1 = CAN-DB 0..3

<DW_IST_2> ::= <DWord> DWord actual value 2 = CAN-DB 4..7

CAN-DB: CAN data byte

Actual value channel 2

On actual value channel 2, the CANsync slave sends actual value message frame 2.

The structure and the function of the message frame correspond to actual value message frame 1. A
maximum of four further actual values can be transferred. Actual value message frame 2 has a different
identifier and assignment of the actual values. Word actual values 5...8 and doubleword actual values
3...4 are assigned to actual value channel 2.

<IDENTIFIER> ::= 0111NNNNNNN NNNNNNN = CANsync slave number
Control Engineering �mega Drive-Line II 131
Baumüller Nürnber g GmbH 5.00005.02

CANsync
Command Channel & Response Channel

The com m and channel and the associa ted response channe l cons ist functionally o f th ree groups o f m es-
sage fram es: in this connection , on ly one com m and/response can ever occur in any one CAN sync interva l.

� Action commands are for initializing and controlling the CANsync slaves and are sent to one or
more CANsync slaves without the CANsync master expecting a response.

� Parameter commands are used for reading or writing a parameter and are always directed to
one CANsync slave. The master always expects a response.

� Upload/download commands are for transferring large volumes of data (program code, data re-
cords) and are always directed to one CANsync slave. The master always expects a response.

Parameter and upload/download commands are sent with the same identifier.

Action command

The CANsync master sends an action command to a single CANsync slave or to a group of CANsync
slaves. The system makes the choice by means of a bit strip (SLAVE_GROUP) in which one bit is assi-
gned to each CANsync slave. When this bit is set, the associated CANsync slave must carry out this
command. In a broadcast command to all the CANsync slaves, all the bits in the bit strip are set.

The various commands are differentiated by the COMMAND data byte. Depending on the command,
there follow different numbers of data bytes that contain data relating to the command.

<IDENTIFIER><SLAVE_GROUP><COMAND><DATA>

<IDENTIFIER> ::= 00000010000 Identifier of action command

<SLAVE_GROUP> ::= <DWord> Slave bits 0..30 = CAN-DB 0..3

<COMMAND> ::= <Byte> 1 = Write control word = CAN-DB 4

<DATA> ::= <DATA_1> | <DATA_2> | <DATA_3> | Data dependent on the command

<DATA_4> | <DATA_5> | <DATA_6> |

<DATA_7> | <DATA_8> | <DATA_9> | <DATA_10>

<DATA_1> ::= <res><Wert>

<res> ::= <Byte> CAN-DB 5

<Wert> ::= <Word> Control word = CAN-DB 6..7

CAN-DB: CAN data byte
132 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
Read parameter

The CANsync master uses the Parameter Lesen (read parameter) command to request a parameter of
the CANsync slave for reading. The message frame length (of 4 data bytes) tells the CANsync slave that
this is a read parameter command. The CANsync slave must not necessarily support the element sel-
ection: in this case it always responds with the current data value.

The CANsync slave must respond within the reference response time, tRSPTO. If it cannot finish the job
by then, it responds with the parameter response in which the job's parameter number is entered and
the BUSY bit is set. The next time that the CANsync master repeats the read parameter command to the
parameter and the CANsync slave has processed the job in the meantime, it responds with the reque-
sted data and the BUSY bit is set to zero.

If the read job cannot be processed or an error occurs, the CANsync slave sets the ERR bit and states
an error code in the data bytes.

Parameter numbers can be between 0 and 4095.

Job:

<IDENTIFIER><CONTROL><PARA_NUM_L><SUB-ADRESSE>

<IDENTIFIER> ::= 1010NNNNNNN NNNNNNN = CANsync slave number

<CONTROL> ::= <P><ELEMENT><PARA_NUM_H> CAN-DB 0

<P> ::= <Bit7> 0 = Identifier: Parameter command

<ELEMENT> ::= <Bit6..4> Element selection of the parameter

<PARA_NUM_H> ::= <Bit3..0> Bits 11..8 of the parameter number

<PARA_NUM_L> ::= <Byte> Bits 7..0 of parameter no. = CAN-DB 1

<SUB-ADRESSE> ::= <Word> Sub-slave address = CAN-DB 2..3

Response:

<IDENTIFIER><STATUS><PARA_NUM_L><DATA><SUB-ADRESSE>

<IDENTIFIER> ::= 1011NNNNNNN NNNNNNN = CANsync slave number

<STATUS> ::= <P><BUSY><ERR> <FREI><PARA_NUM_H> CAN-DB 0

<P> ::= <Bit7> 0 = Identifier: Parameter response

<BUSY> ::= <Bit6> 0 = Response valid,

1 = Job being processed

<ERR> ::= <Bit5> 0 = No error, 1 = Error

<FREI> ::= <Bit4> Free

<PARA_NUM_H> ::= <Bit3..0> Bits 11..8 of the parameter number

<PARA_NUM_L> ::= <Byte> Bits 7..0 of parameter no. = CAN-DB 1

<DATA> ::= <2_BYTE> | <4_BYTE> | <ERR_CODE>

<2_BYTE> ::= <Word> Word parameter = CAN-DB 2..3

<4_BYTE> ::= <Dword> DWord parameter = CAN-DB 2..5

<ERR_CODE> ::= <Word> 2-byte error code = CAN-DB 2..3

<SUB-ADRESSE> ::= <Word> Sub-slave address = CAN-DB 4..5 / 6..7

CAN-DB: CAN data byte
Control Engineering �mega Drive-Line II 133
Baumüller Nürnber g GmbH 5.00005.02

CANsync
Write parameter

The CANsync master uses the Parameter Schreiben (write parameter) command to write a parameter
to a CANsync slave. The message frame length (6 or 8 data bytes) tells the CANsync slave whether the
parameter in question is a word or doubleword parameter. Currently, when writing only element 7, the
parameter value, is permissible.

The CANsync slave must respond within the reference response time, tRSPTO. If it cannot finish the job
by then, it responds with the parameter response in which the job's parameter number is entered and
the BUSY bit is set. The next time that the CANsync master repeats the write parameter command to
the parameter and the CANsync slave has processed the job in the meantime, it responds with the pa-
rameter number and the BUSY bit is set to zero.

If the write job cannot be processed or an error occurs, the CANsync slave sets the ERR bit and states
an error code in the data bytes.

Parameter numbers can be between 0 and 4095.

Job:

<IDENTIFIER><CONTROL><PARA_NUM_L><DATA><SUB-ADRESSE>

<IDENTIFIER> ::= 1010NNNNNNN NNNNNNN = CANsync slave number

<CONTROL> ::= <P><ELEMENT><PARA_NUM_H> CAN-DB 0

<P> ::= <Bit7> 0 = Identifier: Parameter command

<ELEMENT> ::= <Bit6..4> Element selection of the parameter

<PARA_NUM_H> ::= <Bit3..0> Bits 11..8 of the parameter number

<PARA_NUM_L> ::= <Byte> Bits 7..0 of parameter no. = CAN-DB 1

<DATA> ::= <2_BYTE> | <4_BYTE>

<2_BYTE> ::= <Word> Word parameter = CAN-DB 2..3

<4_BYTE> ::= <Dword> DWord parameter = CAN-DB 2..5

<SUB-ADRESSE> ::= <Word> Sub-slave address = CAN-DB 4..5 / 6..7

Response:

<IDENTIFIER><STATUS><PARA_NUM_L><DATA><SUB-ADRESSE>

<IDENTIFIER> ::= 1011NNNNNNN NNNNNNN = CANsync slave number

<STATUS> ::= <P><BUSY><ERR> <FREI> <PARA_NUM_H> CAN-DB 0

<P> ::= <Bit7> 0 = Identifier: Parameter response

<BUSY> ::= <Bit6> 0 = Job finished,

1 = Job being processed

<ERR> ::= <Bit5> 0 = No error, 1 = Error

<FREI> ::= <Bit4> Not yet assigned

<PARA_NUM_H> ::= <Bit3..0> Bits 11..8 of the parameter number

<PARA_NUM_L> ::= <Byte> Bits 7..0 of parameter no. = CAN-DB 1

<DATA> ::= <0_BYTE> | <ERR_CODE>

<0_BYTE> ::= No data bytes if error-free

<ERR_CODE> ::= <Word> 2-byte error code = CAN-DB 2..3

<SUB-ADRESSE> ::= <Word> Sub-slave address = CAN-DB 2..3/4..5

CAN-DB: CAN data byte
134 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
Start of an upload or download

Using uploading or downloading, you can transfer relatively large contiguous data ranges from the CAN-
sync master to the CANsync slave or vice versa.

You configure the transfer using an initialization message frame.

The CANsync slave must respond within the reference response time, tRSPTO. If it cannot finish the job
by then, it responds with the upload/download response in which the BUSY bit is set. The next time that
the CANsync master repeats the upload/download message frame and the CANsync slave has proces-
sed the job in the meantime, it responds with the response in which the BUSY bit is set to zero.

If the upload or download job cannot be processed or an error occurs, the CANsync slave sets the ERR
bit and states an error code in the data bytes.

The start address is a doubleword address. The maximum length of an upload or download is 4096 by-
tes. You must transfer larger data ranges by means of several upload/download initializations. As an op-
tion, you can also state a sub-slave address. This address indicates that the subsequent upload/
download does not refer directly to the addressed CANsync slave, but rather that the upload/download
message frames are passed on to a sub-slave. This sub-slave address remains valid until the end of the
upload/download. The address must be stated again for the next upload/download job. If the sub-
address is equal to zero, the system addresses the CANsync slave directly and not a sub-slave.

Job:

<IDENTIFIER><CONTROL><OFFSET_L><ADRESSE><SUB-ADRESSE>

<IDENTIFIER> ::= 1010NNNNNNN NNNNNNN = CANsync slave number

<CONTROL> ::= <L><U/D><MODE><OFFSET_H> CAN-DB 0

<L> ::= <Bit7> 1 = Identifier: Upload/download job

<U/D> ::= <Bit6> 0 = Upload, 1 = Download

<MODE> ::= <Bit5..4> 01 = Initialization

<OFFSET_H> ::= <Bit3..0> Block length in bytes bits 11..8a)

<OFFSET_L> ::= <Byte> Block length in bytes bits 7..0 =

CAN-DB 1 a)

<ADRESSE> ::= <Dword> Absolute start address = CAN-DB 2..5

<SUB-ADRESSE> ::= <Word> Sub-slave address = CAN-DB 6..7

Response:

<IDENTIFIER><STATUS><OFFSET_L><DATA>

<IDENTIFIER> ::= 1011NNNNNNN NNNNNNN = CANsync slave number

<STATUS> ::= <L><BUSY><ERR><FREI><OFFSET_H> CAN-DB 0

<L> ::= <Bit7> 1 = Identifier: Upload/download respon-

se

<BUSY> ::= <Bit6> 0 = Job finished,

1 = Job being processed

<ERR> ::= <Bit5> 0 = No error, 1 = Error

<FREI> ::= <Bit4> Not yet assigned

<OFFSET_H> ::= <Bit3..0> Block length in bytes bits 11..8a)

<OFFSET_L> ::= <Byte> Block length in bytes bits 7..0 =

CAN-DB 1a)

<DATA> ::= <0_BYTE> | <ERR_CODE>

<0_BYTE> ::= No data bytes if error-free

<ERR_CODE> ::= <Word> Bits 15..0 of error code = CAN-DB 2..3

CAN-DB: CAN data byte

a) In the case of an upload job, the CANsync slave can determine the length instead of the CAN-
sync master. In this case, the length is stated in the response in <OFFSET_H> and
<OFFSET_L>. Otherwise, these values in the response are zero.
Control Engineering �mega Drive-Line II 135
Baumüller Nürnber g GmbH 5.00005.02

CANsync
Ongoing Upload and End of an Upload

The upload procedure consists of successive upload message frames in which the CANsync master re-
quests successive data blocks starting from the start address that was set at initialization. The offset
address increases consecutively as the byte address. The system transfers 6 bytes of useful data with
each message frame. This means that the first message frame starts with offset address 0, the second
one requests the data with offset address 6, etc.

The CANsync slave must respond within the reference response time, tRSPTO. If it cannot finish the job
by then, it responds with the upload response in which the job's offset address is entered and the BUSY
bit is set. The next time that the CANsync master repeats the upload message frame and the CANsync
slave has processed the job in the meantime, it responds with the requested data block and the BUSY
bit is set to zero.

In the last message frame, MODE is set to 11. The CANsync slave checks whether it has reached the
end of the set data range and always sends the last data block with six data bytes. If the memory area
to be loaded does not contain as much data, the system pads it with irrelevant data. If the CANsync slave
has not reached the end, it responds with a set ERR bit and an error code.

The CANsync slave sets the ERR bit and indicates an error code in the data bytes even if the upload job
cannot be processed or if the CANsync slave determines a gap in the requested offset addresses. If ne-
cessary, the CANsync master can repeat the failed message frame, or it cancels the upload by setting
MODE to 01 and entering 0 as the base address and the block length.

Job:

<IDENTIFIER><CONTROL><OFFSET_L>

<IDENTIFIER> ::= 1010NNNNNNN NNNNNNN = CANsync slave number

<CONTROL> ::= <UD><U/D><MODE><OFFSET_H> CAN-DB 0

<UD> ::= <Bit7> 1 = Identifier: Upload/download job

<U/D> ::= <Bit6> 0 = Upload

<MODE> ::= <Bit5..4> 10 = Body

11 = Last block

<OFFSET_H> ::= <Bit3..0> Bits 11..8 of the offset address

<OFFSET_L> ::= <Byte> Bits 7..0 of the offset address = CAN-DB

1

Response:

<IDENTIFIER><STATUS><OFFSET_L><DATA>

<IDENTIFIER> ::= 1011NNNNNNN NNNNNNN = CANsync slave number

<STATUS> ::= <UD><BUSY><ERR><FREI><OFFSET_H> CAN-DB 0

<UD> ::= <Bit7> 1 = Identifier: Upload/download respon-

se

<BUSY> ::= <Bit6> 0 = Job finished,

1 = Job being processed

<ERR> ::= <Bit5> 0 = No error, 1 = Error

<FREI> ::= <Bit4> Not yet assigned

<OFFSET_H> ::= <Bit3..0> Bits 11..8 of the offset address

<OFFSET_L> ::= <Byte> Bits 7..0 of the offset address = CAN-DB

1

<DATA> ::= <DATEN> | <ERR_CODE>

<DATEN> ::= <Word><Word><Word> 6 bytes of data = CAN-DB 2..7

<ERR_CODE> ::= <Word> Error code = CAN-DB 2..3

CAN-DB: CAN data byte
136 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
Ongoing Download and End of a Download

The download procedure consists of successive download message frames in which the CANsync ma-
ster sends successive data blocks starting from the start address that was set at initialization. The offset
address increases consecutively as the byte address. This means that the first message frame starts
with offset address 0, the second one sends the data with offset address 6, etc.

The CANsync slave must respond within the reference response time, tRSPTO. If it cannot finish the job
by then, it responds with the download response in which the job's offset address is entered and the
BUSY bit is set. The next time that the CANsync master repeats the download message frame and the
CANsync slave has processed the job in the meantime, it responds with the response message frame
in which the BUSY bit is set to zero.

In the last message frame, MODE is set to 11 and it also contains six data bytes. However, the CANsync
slave may only take the data bytes that correspond to the previously set download length. If the CANsync
slave has not yet reached the end, it responds with a set ERR bit and an error code.

The CANsync slave sets the ERR bit and indicates an error code in the data bytes even if the download
job cannot be processed or if the CANsync slave determines a gap in the sent offset addresses. If ne-
cessary, the CANsync master can repeat the failed message frame, or it cancels the download by setting
MODE to 01 and entering 0 as the base address and the block length.

Job:

<IDENTIFIER><CONTROL><OFFSET_L><DATA>

<IDENTIFIER> ::= 1010NNNNNNN NNNNNNN = CANsync slave number

<CONTROL> ::= <UD><U/D><MODE><OFFSET_H> CAN-DB 0

<UD> ::= <Bit7> 1 = Identifier: Upload/download job

<U/D> ::= <Bit6> 1 = Download

<MODE> ::= <Bit5..4> 10 = Body

11 = Last block

<OFFSET_H> ::= <Bit3..0> Bits 11..8 of the offset address

<OFFSET_L> ::= <Byte> Bits 7..0 of the offset address = CAN-DB

1

<DATA> ::= <Word><Word><Word> 6 bytes of useful data = CAN-DB 2..7

Response:

<IDENTIFIER><STATUS><OFFSET_L><DATA>

<IDENTIFIER> ::= 1011NNNNNNN NNNNNNN = CANsync slave number

<STATUS> ::= <UD><BUSY><ERR><FREI><ERR_CODE_H>CAN-DB 0

<UD> ::= <Bit7> 1 = Identifier: Upload/download

<BUSY> ::= <Bit6> 0 = Job finished,

1 = Job being processed

<ERR> ::= <Bit5> 0 = No error, 1 = Error

<FREI> ::= <Bit4> Not yet assigned

<OFFSET_H> ::= <Bit3..0> Bits 11..8 of the offset address

<OFFSET_L> ::= <Byte> Bits 7..0 of the offset address = CAN-DB

1

<DATA> ::= <0_BYTE> | <ERR_CODE>

<0_BYTE> ::= No data bytes if error-free

<ERR_CODE> ::= <Word> Bits 15..0 of error code = CAN-DB 2..3

CAN-DB: CAN data byte
Control Engineering �mega Drive-Line II 137
Baumüller Nürnber g GmbH 5.00005.02

CANsync
7.2.2 Register Structure and Function of the �mega CANsync Master

In the following sections, we will explain the register structure of communication RAM in the Omega
CANsync master.

To allow you to access registers of the communication RAM in the PROPROG wt II project, data types
are defined that map the register structure. The system uses these data types to declare variables that
are assigned to the CANsync interface module's base address.

After this, it is possible to access the registers of communication RAM via the structure elements of the
declared variables.

At initialization of the CANsync master interface module, the registers in communication RAM have a
different meaning than after initialization in cyclical operation.

This means that, for initialization there is the

CANsync_INIT_BMSTRUCT

and for cyclical operation, the

CANsync_MA_CTRL_BMSTRUCT

These structures are defined from library BM_TYPES_20bd00 onwards. After you have integrated libra-
ry BM_TYPES_20bd00 in the project, the data types are available.

These structures contain

� 8-bit elements,

� 16-bit elements,

� 32-bit elements,

� Structures from the elements mentioned above

� Fields (ARRAY) and structures from the elements and structures mentioned above

Short designations have been prepended to the data types (8-, 16-, 32-bit elements, structures and
fields) that are used in a structure. This is for the sake of clarity when using the structures in pro-
gramming.

Other data types that are not used in the structures include:

Data type Short designation Number of bits

BYTE b 8

WORD W 16

DWORD (double word) d 32

SINT (short integer) Si 8

DINT (double integer) di 32

USINT (unsigned short integer) us 8

UINT (unsigned integer) u 16

UDINT (unsigned double integer) ud 32

STRUCT _ (underline) -

ARRAY a -

Data type Short designation Number of bits

BOOL (bit) X 1

TIME t -
138 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
Explanation of declaring the global variables

For initialization, you create a global variable of data type CANsync_INIT_BMSTRUCT. You must assign
this variable via declaration of global variables to the base address of the CANsync interface module.

Example:

CANsync interface module 2 (node 2) in �mega Drive-Line II

_CANsync_INIT_MA AT %MB3.200000 : CANsync_INIT_BMSTRUCT;

Where:

CANsync_INIT_ MA is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_INIT_BMSTRUCT is the data type
%MB3.200000 is the base address of the CANsync 2 interface module

on the �mega Drive-Line II.

For cyclical operation, you create a global variable of data type CANsync_MA_CTRL_BMSTRUCT. You
must assign this variable via declaration of global variables to the base address of the CANsync interface
module.

Example:

CANsync interface module 2 (node 2) in �mega Drive-Line II

_CANsync_CTRL_MA AT %MB3.200000 : CANsync_MA_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_MA is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_MA_CTRL_BMSTRUCT is the data type
%MB3.200000 is the base address of the CANsync 2 interface module

on the �mega Drive-Line II.

In the following tables, the variable name is replaced by an asterisk (*).

This means that you access register *.w_CPU_CONTROL via

_CANsync_INIT_MA.w_CPU_CONTROL,

you access *.w_OPTION_STATUS via

_CANsync_INIT_MA.w_OPTION_STATUS.

NOTE
Control Engineering �mega Drive-Line II 139
Baumüller Nürnber g GmbH 5.00005.02

CANsync
Where:

CANsync_INIT_ MA is the variable name with the data type short designati-
on "_" for STRUCT

w_CPU_CONTROL is the control register of the CANsync interface module
with data type short designation "w" for WORD

Registers *.w_CPU_CONTROL and *.w_OPTION_STATUS can also be triggered via the struc-
ture for cyclical operation. This makes possible access via

_CANsync_CTRL_MA.w_CPU_CONTROL and

_CANsync_CTRL_MA.w_OPTION_STATUS.

Where

CANsync_CTRL_MA is the variable name with the data type short designati-
on "_" for STRUCT

w_CPU_CONTROL is the status register of the CANsync interface module
with data type short designation "w" for WORD

Example of accessing an element of a field that is used in the structure:

According to the table: *.a_WR_VALUE[3]

Access: _CANsync_CTRL_MA.a_WR_VALUE[3]

Where

CANsync_CTRL_MA is the variable name with the data type short designati-
on "_" for STRUCT

a_WR_VALUE[3] is the register for reference value 3 with the data type
short designation "a" for ARRAY. The data type of the
elements of the field (of the reference values) is taken
from the corresponding table and the description.

Example of accessing an element of a two-dimensional field that is used in the structure:

According to the table: *.a_RD_VALUE[5][7]

Access: _CANsync_CTRL_MA.a_RD_VALUE[5][7]

Where

CANsync_CTRL_MA is the variable name with the data type short designati-
on "_" for STRUCT

a_RD_VALUE[5][7] is the register fo r actual value 7 of CANsync slave 5 w ith
the da ta type short designation "a" for ARRAY. The data
type of the elements of the field (o f the reference values)
is taken from the corresponding tab le and the description.
140 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
Example of accessing an element a (sub) structure, which is itself a field that is used in the structure:

According to the table:*.a_CFG_RDC_WORD[31].b_CFG_RDC2_WORD3

Access:_CANsync_CTRL_MA.a_CFG_RDC_WORD[31].b_CFG_RDC2_WORD3

Where

CANsync_CTRL_MA is the variable name with the data type short designati-
on "_" for STRUCT

a_CFG_RDC_WORD[31] is the field containing the configuration data for mapping
the words of CANsync slave 31's actual value message
frames w ith the data type short designation "a" for ARRAY

b_CFG_RDC2_WORD3 is the register for the configuration data for mapping the
third word of actual value message frame 2 (of CANsync
slave 31) w ith the data type short designation "b" for BYTE

Example of accessing an element of a (sub) structure that is used in the structure:

According to the table:*._CFG_WRC_WORD.b_CFG_WRC1_WORD0

Access: _CANsync_CTRL_MA._CFG_WRC_WORD.b_CFG_WRC1_WORD0

Where

CANsync_CTRL_MA is the variable name with the data type short designati-
on "_" for STRUCT

_CFG_WRC_WORD is the structure containing the configuration data for
mapping the words of the reference value message fra-
mes with the data type short designation "_" for
STRUCT

b_CFG_WRC1_WORD0 is the register for the configuration data for mapping the
0th word of reference value message frame 1 with the
data type short designation "b" for BYTE

General Registers of the CANsync Interface Module

Register Contents

*.w_CANsync_STATUS CANsync-Status

*.w_OMEGA_NR The �mega number set using a DIP switch

*.i_SW1_NR Card software number

*.i_SW1_RELEASE Software revision incompatible and compatible
Control Engineering �mega Drive-Line II 141
Baumüller Nürnber g GmbH 5.00005.02

CANsync
CANsync status

Each time the CANsync processor cycle is run through, the system outputs the CANsync status to
*.w_CAN_STATUS.

Meaning:

�mega number

In register *.w_OMEGA_NR, the system displays the �mega number that was set using the DIP switch
(S33). In the case of a CANsync master interface module, this number is meaningless.

Software number and software version

In register *.i_SW1_NR, the system displays the number of the CANsync software on the �mega Drive-
Line II.

In register *.i_SW1_RELEASE, the system displays the compatible and the incompatible revision of the
CANsync software on the �mega Drive-Line II.

Initialization:

For initialization, you create a global variable of data type CANsync_INIT_BMSTRUCT. You must assign
this variable via declaration of global variables to the base address of the CANsync interface module.

Example:

CANsync interface module 2 (node 2) in �mega Drive-Line II

_CANsync_INIT_MA AT %MB3.200000 : CANsync_INIT_BMSTRUCT;

Where:

CANsync_INIT_ MA is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_INIT_BMSTRUCT is the data type
%MB3.200000 is the base address of the CANsync 2 interface module

on the �mega Drive-Line II.

Bit No. Meaning (bit = TRUE)

0 Reserved

1 Overrun: A CANsync message could not be received

2 CANsync send buffer is free

3 CANsync send job executed successfully

4 CANsync message currently being received

5 CANsync message currently being sent

6 Error present (warning)

7 CANsync node is deactivated (BUS off)

8-15 Reserved
142 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
In addition, you carry out configuration for synchronous operation:

You state the CANsync slave type for each CANsync slave interface module on the CANsync bus (slave
number setting using DIP switches). Currently, there is only CANsync slave type 16#01. If the value is
set to 16#00, this means that no CANsync slave is present with this slave number or that the CANsync
master does not expect one.

You set the operating mode via register *.w_CPU_CONTROL. The system displays the currently active
operating mode in register *.w_OPTION_STATUS. You can change the operating mode even after it has
been started successfully.

(* at initialization, corresponds to _CANsync_INIT_MA, for example; after initialization,
corresponds to _CANsync_CTRL_MA) for example

Meaning Register Value

Baud rate For example: 500 kbps *.b_BT_0
*.b_BT_1

16#00
16#1C

CANsync interval For example: 2 ms *.b_TIME_PATTERN 16#02

Acceptance Code All message frames *.b_AC 16#FF

Acceptance Mask *.b_AM 16#FF

Output Control 16#FA *.b_OUTPUT_CONTROL 16#FA

Clock Divider 16#07 *.b_CLOCK_DIVIDER 16#07

Slave/Master Master *.b_MA_SL_MODE 16#00

Slave types CANsync slave with slave number x
not available / available

*.a_SL_TYP[x] 16#00 /
16#01

Register Contents

*.w_CPU_CONTROL Control register of CANsync interface module

*.w_OPTION_STATUS Status register of CANsync interface module

Control register
of CANsync
interface
module

Meaning

16#0000 Cold restart

16#0001 Handshake

16#0002 Take over initialization data

16#0012 Reserved

16#0013 Reserved

16#0020 Start synchronous operating mode

16#0040 Enable active operation

16#0080 (Bit 7 = TRUE) Reset CAN controller
Control Engineering �mega Drive-Line II 143
Baumüller Nürnber g GmbH 5.00005.02

CANsync
Initialization is carried out using commands 16#0000, 16#0001 and 16#0002 to *.w_CPU_CONTROL.
This starts set-up mode. Next, the system reports the slave status of the initialized CANsync slaves (see
“Command and Response Channel” on page 155). When all the CANsync slaves have reported and
have the synchronized status, active operation must be enabled. This is done by setting bit 6 in
.w_CPU_CONTROL (.w_CPU_CONTROL = 16#0040).

Enabling may be carried out even if not all the CANsync slaves have reported but if the application can
administer this.

If you set bit 7 of *.w_CPU_CONTROL (*.w_CPU_CONTROL = 16#0080), the CAN controller is reset
and the bit is cleared. This makes it possible to reset the CAN controller's BUS-OFF status and to send
and receive CANsync message frames again. The system displays the BUS-OFF status in
*.w_CANsync_STATUS (See “General Registers of the CANsync Interface Module” on page 141.).

The following table lists the registers that can be operated at initialization.

(* At initialization, corresponds to structure _CANsync_INIT_MA, for example)

Status register
of CANsync
interface
module

Meaning

16#0001 Start up

16#0002 Take over waiting for initialization data

16#0003 Waiting for start

16#0011 Reserved

16#0012 Reserved

16#0013 Setting up synchronous operation of CANsync slave

16#0020 Synchronous operation of CANsync slave is active

16#0041 Reserved

16#0042 Reserved

16#0043 Setting up synchronous operation of CANsync master

16#0080 Synchronous operation of CANsync master is active

Register Contents

*.b_MA_SL_MODE Operating mode: Master/slave (SYNC-OUT/SYNC-IN)

*.b_AC Acceptance Code of the CANsync controller

*.b_AM Acceptance Mask of the CANsync controller

*.b_BT_0 Bit timing register 0 of the CANsync controller

*.b_BT_1 Bit timing register 1 of the CANsync controller

*.b_OUTPUT_CONTROL Output control register of the CANsync controller

*.b_CLOCK_DIVIDER Clock divider of the CANsync controller

*.b_TIME_PATTERN CANsync interval in ms

*.a_SL_TYP[0] CANsync slave type 0

*.a_SL_TYP[1] CANsync slave type 1

... ...

*.a_SL_TYP[31] CANsync slave type 31
144 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
Reference Values

Reference values are sent in the CANsync event task.

(* After initialization, corresponds to variable _CANsync_CTRL_MA, for example)

In the control register, the system marks with 16#05 the fact that new reference values for the respective
reference value message frame (as well as the reference value channel [SWK or WRC]) were entered
and that the message frame will be sent. The CANsync interface module acknowledges the command
with 16#04.

Reference value message frames are configured in the following registers.

(* Corresponds, for example, to _CANsync_CTRL_MA).

With the configuration, you state which reference value is to be entered at what location (..._WORD0,
..., ..._WORD3) in a reference value message frame (..._WRC1_..., ..._WRC2_...)

Register Contents

*.b_CTRLREG_WRC1 Control register of reference value channel 1

*.b_CTRLREG_WRC2 Control register of reference value channel 2

*.b_CTRLREG_WRC3 Reserved

*.b_CTRLREG_WRC4 Reserved

*.b_CTRLREG_WRC5 Reserved

*.b_CTRLREG_WRC6 Reserved

*.b_CTRLREG_WRC7 Reserved

*.b_CTRLREG_WRC8 Reserved

Register Contents

*._CFG_WRC_WORD.b_CFG_WRC1_WORD0 Configuration of reference value message frame 1 word 0

*._CFG_WRC_WORD.b_CFG_WRC1_WORD1 Configuration of reference value message frame 1 word 1

*._CFG_WRC_WORD.b_CFG_WRC1_WORD2 Configuration of reference value message frame 1 word 2

*._CFG_WRC_WORD.b_CFG_WRC1_WORD3 Configuration of reference value message frame 1 word 3

*._CFG_WRC_WORD.b_CFG_WRC2_WORD0 Configuration of reference value message frame 2 word 0

*._CFG_WRC_WORD.b_CFG_WRC2_WORD1 Configuration of reference value message frame 2 word 1

*._CFG_WRC_WORD.b_CFG_WRC2_WORD2 Configuration of reference value message frame 2 word 2

*._CFG_WRC_WORD.b_CFG_WRC2_WORD3 Configuration of reference value message frame 2 word 3

*._CFG_WRC_WORD.b_CFG_WRC3_WORD0 Reserved

*._CFG_WRC_WORD.b_CFG_WRC3_WORD1 Reserved

*._CFG_WRC_WORD.b_CFG_WRC3_WORD2 Reserved

*._CFG_WRC_WORD.b_CFG_WRC3_WORD3 Reserved

... ...

*._CFG_WRC_WORD.b_CFG_WRC8_WORD0 Reserved

*._CFG_WRC_WORD.b_CFG_WRC8_WORD1 Reserved

*._CFG_WRC_WORD.b_CFG_WRC8_WORD2 Reserved

*._CFG_WRC_WORD.b_CFG_WRC8_WORD3 Reserved
Control Engineering �mega Drive-Line II 145
Baumüller Nürnber g GmbH 5.00005.02

CANsync
Meaning

One word of the message is only not used if the following settings are made:
reference value number = 0, highword/lowword = 0 and assigned = 0.

Example:

Bit 0 Assigned
If = 1, the system uses this word of the message frame

Bit 1 Highword/lowword
If = 1, the system enters the highword of the reference value

Bit 2

Reference value number
Number of reference value 0 to 31

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7 Reserved, must be set to zero

NOTE
146 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
(* Corresponds, for example, to _CANsync_CTRL_MA).

This setting enters the lowword of reference value 3 in reference value message frame 1 in word 0.

(* Corresponds, for example, to _CANsync_CTRL_MA).

The reference values can be word or doubleword reference values.

Explanation of Using the Reference Value Channels

In synchronous operation, two reference value channels (channels 1 and 2; also WRC1 and WRC2) are
available. Reference value message frames 1 and 2 are sent on reference value channels 1 and 2
(RVC).

Both reference value message frames consist of four words each (W0 to W3). After CAN initialization,
you must state at least once the assignment of these words. This can be carried out in the initialization
program. To do this, enter in areas *._CFG_WRC_WORD.b_CFG_WRC1_WORD0 to
*._CFG_WRC_WORD.b_CFG_WRC2_WORD3 for each word of the reference value message frames
the reference value that is to be transferred at this location. Valid reference value numbers are in the
range 0 to 7. For doubleword reference values, you must use two words in the message frame.

You can change the configuration even during active operation. The system applies the change in the
next CANsync interval at the latest. At the start of the CANsync interval, the CANsync interface module
reads the configuration data.

The system generates reference values in synchronous operation in the CANsync event task. The refe-
rence values for reference value message frame 1 must be entered as a reference value
(*.a_WR_VALUE[0] to *.a_WR_VALUE[7]) by 490 µs after the start of the CANsync event task in com-
munication RAM. This is because the CANsync interface module starts generating the reference value
message frame then. To identify the fact that new reference values have been entered, the system must
enter 16#05 in the appropriate control register (*.b_CTRLREG_WRC1 or *.b_CTRLREG_WRC2). This
is the enable telling the CANsync interface module that the reference values can be read and that the
reference value message frame is being generated. If this enable is not issued by 490 µs after the start

*._CFG_WRC_WORD.b_CFG_WRC1_WORD0 = 16#0D 0 0 0 0 1 1 0 1

R RV No. H/L b

Register Contents

*.a_WR_VALUE[0] Reference value 0

*.a_WR_VALUE[1] Reference value 1

*.a_WR_VALUE[2] Reference value 2

*.a_WR_VALUE[3] Reference value 3

*.a_WR_VALUE[4] Reference value 4

*.a_WR_VALUE[5] Reference value 5

*.a_WR_VALUE[6] Reference value 6

*.a_WR_VALUE[7] Reference value 7

*.a_WR_VALUE[8] Reserved

... ...

*.a_WR_VALUE[31] Reserved
Control Engineering �mega Drive-Line II 147
Baumüller Nürnber g GmbH 5.00005.02

CANsync
of the CANsync event task, reference value message frame 1 is omitted in this CANsync interval. To
acknowledge generation of the reference value message frame, the CANsync interface module enters
16#04 in the control register. This allows users to check whether the system finished generation of the
reference value in good time or not. If generation of the reference value takes a relatively long time –
from the start of the CANsync event task to execution of the application program approximately 80 µs

expire – the system must always generate the reference value for the next start of the CANsync event
task and it only needs to copy the precalculated reference values to the corresponding locations in com-
munication RAM at the start of the new CANsync event task.

The time by which the reference values for reference value message frame 2 must be entered is delayed
by the execution time for generating reference value message frame 1. The duration depends on the
number of reference value words that have to be entered (at least 15 µs to a maximum of 60 µs). Si-
gnalling in the control register is the same as for reference value message frame 1.

The reference value message frame is used to request the actual value message frame of a CANsync
slave. The number of the CANsync slave interface module is entered in control register actual value re-
quest (*.b_CTRLREG_RD_ORDER_RDC1 or *.b_CTRLREG_RD_ORDER_RDC2) (for a further des-
cription, see “Actual Values” on page 148). Reference value message frame 1 requests actual value
message frame 1, etc.

Actual Values

Actual value message frames are requested by a specific piece of information in the identifiers of refe-
rence value message frames. (See “Reference value channel 1” on page 130.)

(* Corresponds, for example, to _CANsync_CTRL_MA).

This states the highest slave number of the CANsync slave for automatic actual value request (see
*.b_CTRLREG_RD_ORDER_RDC1 ff.).

(* Corresponds, for example, to _CANsync_CTRL_MA).

In the control register, you can state the slave number of the CANsync slave that is to report its actual
values in the corresponding actual value message frame. If 16#80 is entered in the control register, the
system increments the slave number by 1 in every cycle until the maximum slave number
(*.b_MAX_SL_NR) is reached. The system then starts again with slave number 0.

Register Contents

*.b_MAX_SL_NR Maximum slave number (bus address of the CANsync
slave

Register Contents

*.b_CTRLREG_RD_ORDER_RDC1 Control register actual value request of actual value
channel 1

*.b_CTRLREG_RD_ORDER_RDC2 Control register actual value request of actual value
channel 2

*.b_CTRLREG_RD_ORDER_RDC3 Reserved

*.b_CTRLREG_RD_ORDER_RDC4 Reserved
148 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
(* Corresponds, for example, to _CANsync_CTRL_MA).

The system enters in the status register the slave number of the CANsync slave from which an actual
value message frame was received.

(* Corresponds, for example, to _CANsync_CTRL_MA).

When the corresponding actual value message frame for a CANsync slave has arrived, the system en-
ters 16#02 in the actual value acknowledgement register.

Actual value message frames are configured in the following registers.

Register Contents

*.b_STATREG_RDC1 Status register of actual value channel 1

*.b_STATREG_RDC2 Status register of actual value channel 2

*.b_STATREG_RDC3 Reserved

*.b_STATREG_RDC4 Reserved

Register Contents

*.a_STATREG_RDC[0].b_STATREG_RDC1 Actual value acknowledgement of actual value channel
1 of slave 0

*.a_STATREG_RDC[0].b_STATREG_RDC2 Actual value acknowledgement of actual value channel
2 of slave 0

*.a_STATREG_RDC[0].b_STATREG_RDC3 Reserved

*.a_STATREG_RDC[0].b_STATREG_RDC4 Reserved

*.a_STATREG_RDC[1].b_STATREG_RDC1 Actual value acknowledgement of actual value channel
1 of slave 1

*.a_STATREG_RDC[1].b_STATREG_RDC2 Actual value acknowledgement of actual value channel
2 of slave 1

*.a_STATREG_RDC[1].b_STATREG_RDC3 Reserved

*.a_STATREG_RDC[1].b_STATREG_RDC4 Reserved

*.a_STATREG_RDC[2].b_STATREG_RDC1 Actual value acknowledgement of actual value channel
1 of slave 2

*.a_STATREG_RDC[2].b_STATREG_RDC2 Actual value acknowledgement of actual value channel
2 of slave 2

*.a_STATREG_RDC[2].b_STATREG_RDC3 Reserved

*.a_STATREG_RDC[2].b_STATREG_RDC4 Reserved

... ...

*.a_STATREG_RDC[31].b_STATREG_RDC1 Actual value acknowledgement of actual value channel
1 of slave 31

*.a_STATREG_RDC[31].b_STATREG_RDC2 Actual value acknowledgement of actual value channel
2 of slave 31

*.a_STATREG_RDC[31].b_STATREG_RDC3 Reserved

*.a_STATREG_RDC[31].b_STATREG_RDC4 Reserved

Register Contents

*.a_CFG_RDC_WORD[0].b_CFG_RDC1_WORD0 Configuration of actual value message frame 1 word 0
slave 0

*.a_CFG_RDC_WORD[0].b_CFG_RDC1_WORD1 Configuration of actual value message frame 1 word 1
slave 0
Control Engineering �mega Drive-Line II 149
Baumüller Nürnber g GmbH 5.00005.02

CANsync
*.a_CFG_RDC_WORD[0].b_CFG_RDC1_WORD2 Configuration of actual value message frame 1 word 2
slave 0

*.a_CFG_RDC_WORD[0].b_CFG_RDC1_WORD3 Configuration of actual value message frame 1 word 3
slave 0

*.a_CFG_RDC_WORD[0].b_CFG_RDC2_WORD0 Configuration of actual value message frame 2 word 0
slave 0

*.a_CFG_RDC_WORD[0].b_CFG_RDC2_WORD1 Configuration of actual value message frame 2 word 1
slave 0

*.a_CFG_RDC_WORD[0].b_CFG_RDC2_WORD2 Configuration of actual value message frame 2 word 2
slave 0

*.a_CFG_RDC_WORD[0].b_CFG_RDC2_WORD3 Configuration of actual value message frame 2 word 3
slave 0

*.a_CFG_RDC_WORD[0].b_CFG_RDC3_WORD0 Reserved

*.a_CFG_RDC_WORD[0].b_CFG_RDC3_WORD1 Reserved

*.a_CFG_RDC_WORD[0].b_CFG_RDC3_WORD2 Reserved

*.a_CFG_RDC_WORD[0].b_CFG_RDC3_WORD3 Reserved

*.a_CFG_RDC_WORD[0].b_CFG_RDC4_WORD0 Reserved

*.a_CFG_RDC_WORD[0].b_CFG_RDC4_WORD1 Reserved

*.a_CFG_RDC_WORD[0].b_CFG_RDC4_WORD2 Reserved

*.a_CFG_RDC_WORD[0].b_CFG_RDC4_WORD3 Reserved

*.a_CFG_RDC_WORD[1].b_CFG_RDC1_WORD0 Configuration of actual value message frame 1 word 0
slave 1

*.a_CFG_RDC_WORD[1].b_CFG_RDC1_WORD1 Configuration of actual value message frame 1 word 1
slave 1

*.a_CFG_RDC_WORD[1].b_CFG_RDC1_WORD2 Configuration of actual value message frame 1 word 2
slave 1

*.a_CFG_RDC_WORD[1].b_CFG_RDC1_WORD3 Configuration of actual value message frame 1 word 3
slave 1

*.a_CFG_RDC_WORD[1].b_CFG_RDC2_WORD0 Configuration of actual value message frame 2 word 0
slave 1

*.a_CFG_RDC_WORD[1].b_CFG_RDC2_WORD1 Configuration of actual value message frame 2 word 1
slave 1

*.a_CFG_RDC_WORD[1].b_CFG_RDC2_WORD2 Configuration of actual value message frame 2 word 2
slave 1

*.a_CFG_RDC_WORD[1].b_CFG_RDC2_WORD3 Configuration of actual value message frame 2 word 3
slave 1

*.a_CFG_RDC_WORD[1].b_CFG_RDC3_WORD0 Reserved

*.a_CFG_RDC_WORD[1].b_CFG_RDC3_WORD1 Reserved

*.a_CFG_RDC_WORD[1].b_CFG_RDC3_WORD2 Reserved

*.a_CFG_RDC_WORD[1].b_CFG_RDC3_WORD3 Reserved

*.a_CFG_RDC_WORD[1].b_CFG_RDC4_WORD0 Reserved

*.a_CFG_RDC_WORD[1].b_CFG_RDC4_WORD1 Reserved

*.a_CFG_RDC_WORD[1].b_CFG_RDC4_WORD2 Reserved

*.a_CFG_RDC_WORD[1].b_CFG_RDC4_WORD3 Reserved

... ...

*.a_CFG_RDC_WORD[31].b_CFG_RDC1_WORD0 Configuration of actual value message frame 1 word 0
slave 31

*.a_CFG_RDC_WORD[31].b_CFG_RDC1_WORD1 Configuration of actual value message frame 1 word 1
slave 31

*.a_CFG_RDC_WORD[31].b_CFG_RDC1_WORD2 Configuration of actual value message frame 1 word 2
slave 31

*.a_CFG_RDC_WORD[31].b_CFG_RDC1_WORD3 Configuration of actual value message frame 1 word 3
slave 31

*.a_CFG_RDC_WORD[31].b_CFG_RDC2_WORD0 Configuration of actual value message frame 2 word 0
slave 31

Register Contents
150 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
(* Corresponds, for example, to _CANsync_CTRL_MA).

Your configuration tells the system which actual value it is to transfer at which location in the actual value
message frame.

Meaning

One word of the message frame is only not used if the following settings are
made: actual value number = 0, highword/lowword = 0 and assigned = 0.

*.a_CFG_RDC_WORD[31].b_CFG_RDC2_WORD1 Configuration of actual value message frame 2 word 1
slave 31

*.a_CFG_RDC_WORD[31].b_CFG_RDC2_WORD2 Configuration of actual value message frame 2 word 2
slave 31

*.a_CFG_RDC_WORD[31].b_CFG_RDC2_WORD3 Configuration of actual value message frame 2 word 3
slave 31

*.a_CFG_RDC_WORD[31].b_CFG_RDC3_WORD0 Reserved

*.a_CFG_RDC_WORD[31].b_CFG_RDC3_WORD1 Reserved

*.a_CFG_RDC_WORD[31].b_CFG_RDC3_WORD2 Reserved

*.a_CFG_RDC_WORD[31].b_CFG_RDC3_WORD3 Reserved

*.a_CFG_RDC_WORD[31].b_CFG_RDC4_WORD0 Reserved

*.a_CFG_RDC_WORD[31].b_CFG_RDC4_WORD1 Reserved

*.a_CFG_RDC_WORD[31].b_CFG_RDC4_WORD2 Reserved

*.a_CFG_RDC_WORD[31].b_CFG_RDC4_WORD3 Reserved

Bit 0 Assigned
If = 1, the system uses this word of the message frame

Bit 1 Highword/lowword
If = 1, the system reads the highword of the actual value

Bit 2
Actual value number
Number of actual value 0 to 15

Bit 3

Bit 4

Bit 5

Bit 6 Reserved

Bit 7

NOTE

Register Contents
Control Engineering �mega Drive-Line II 151
Baumüller Nürnber g GmbH 5.00005.02

CANsync
Example:

(* Corresponds, for example, to _CANsync_CTRL_MA).

This means that the system reads word 0 from actual value message frame 1 of CANsync slave 0 and
writes it to the lowword of actual value 3.

*.a_CFG_RDC_WORD[0].b_CFG_RDC1_WORD0 = 16#0D 0 0 0 0 1 1 0 1

R AV No. H/L B

Register Contents

*.a_RD_BMARRAY[0][0] Actual value 0 of slave 0

*.a_RD_BMARRAY[0][1] Actual value 1 of slave 0

*.a_RD_BMARRAY[0][2] Actual value 2 of slave 0

*.a_RD_BMARRAY[0][3] Actual value 3 of slave 0

*.a_RD_BMARRAY[0][4] Actual value 4 of slave 0

*.a_RD_BMARRAY[0][5] Actual value 5 of slave 0

*.a_RD_BMARRAY[0][6] Actual value 6 of slave 0

*.a_RD_BMARRAY[0][7] Actual value 7 of slave 0

*.a_RD_BMARRAY[0][8] Reserved
152 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
(* Corresponds, for example, to _CANsync_CTRL_MA).

The actual values can be word or doubleword actual values.

When displaying _CANsync_CTRL_MA in the PROPROG wt II watch win-
dow, a period may be between the square brackets.

Explanation of Using the Actual Value Channels

In synchronous operation, two actual value channels (channels 1 and 2; also RDC1 and RDC2) are
available. Actual value message frames 1 and 2 are sent on actual value channels 1 and 2 (AVC).

... ...

*.a_RD_BMARRAY[0][15] Reserved

*.a_RD_BMARRAY[1][0] Actual value 0 of slave 1

*.a_RD_BMARRAY[1][1] Actual value 1 of slave 1

*.a_RD_BMARRAY[1][2] Actual value 2 of slave 1

*.a_RD_BMARRAY[1][3] Actual value 3 of slave 1

*.a_RD_BMARRAY[1][4] Actual value 4 of slave 1

*.a_RD_BMARRAY[1][5] Actual value 5 of slave 1

*.a_RD_BMARRAY[1][6] Actual value 6 of slave 1

*.a_RD_BMARRAY[1][7] Actual value 7 of slave 1

*.a_RD_BMARRAY[1][8] Reserved

... ...

*.a_RD_BMARRAY[1][15] Reserved

... ...

*.a_RD_BMARRAY[31][0] Actual value 0 of slave 31

*.a_RD_BMARRAY[31][1] Actual value 1 of slave 31

*.a_RD_BMARRAY[31][2] Actual value 2 of slave 31

*.a_RD_BMARRAY[31][3] Actual value 3 of slave 31

*.a_RD_BMARRAY[31][4] Actual value 4 of slave 31

*.a_RD_BMARRAY[31][5] Actual value 5 of slave 31

*.a_RD_BMARRAY[31][6] Actual value 6 of slave 31

*.a_RD_BMARRAY[31][7] Actual value 7 of slave 31

*.a_RD_BMARRAY[31][8] Reserved

... ...

*.a_RD_BMARRAY[31][15] Reserved

NOTE

Register Contents
Control Engineering �mega Drive-Line II 153
Baumüller Nürnber g GmbH 5.00005.02

CANsync
Both actual value message frames consist of four words each (W0 to W3). After CANsync initialization,
you must state at least once the assignment of these words. This can be carried out in the initialization
program.
To do this, you must enter in area *.a_CFG_RDC_WORD[0].b_CFG_RDC1_WORD0 to
*.a_CFG_RDC_WORD[31].b_CFG_RDC2_WORD3 for each assigned word of the actual value messa-
ge frames (of each CANsync slave) the actual value that is transferred at this position. Valid actual value
numbers are in the range 0 to 7. For doubleword actual values, you must use two words in the message
frame.

You can change the configuration even during active operation. The system applies the change in the
next CANsync interval at the latest. (The CANsync interface module reads the configuration data when
the corresponding actual value message frame is received).

The system carries out actual value message frame evaluation at the start of the CANsync event task.
There are two evaluation methods: With the first one, you poll the status registers of the actual value
channels (*.b_STATREG_RDC1 or *.b_STATREG_RDC2). The system enters in these registers the
slave number of the CANsync slave from which the corresponding actual value message frame was re-
ceived. You can then read out the actual values from registers (*.a_RD_BMARRAY[0][0] to
*.a_RD_BMARRAY[31][7]) of this CANsync slave and set the status register to 16#FF, for example, to
be able to detect correctly the next entry.

With the second method, you poll directly actual value acknowledgement
(*.a_STATREG_RDC[0].b_STATREG_RDC1 to *.a_STATREG_RDC[31].b_STATREG_RDC2) for one
CANsync slave. In this acknowledgement register, the system marks with 16#02 reception of an actual
value message frame. You can then read out the actual values from registers (*.a_RD_BMARRAY[0][0]
to *.a_RD_BMARRAY[31][7]) of this CANsync slave. In this case too, the system must then write another
value to the status register to detect reentry of the acknowledgement.

You must assign in accordance with the actual value configuration in the application program the actual
values that must be read when an actual value message frame has been received.

The system uses the reference value message frame to request a CANsync slave to send its actual va-
lue message frame.

The number of the CANsync slave interface module is entered in control register actual value request
 (*.b_CTRLREG_RD_ORDER_RDC1 and *.b_CTRLREG_RD_ORDER_RDC2). Reference value mes-
sage frame 1 requests actual value message frame 1, etc.

The request number for actual value message frame 1 and actual value message frame 2, etc. can be
the same or different, i.e. CANsync slave x can request actual value message frame 1 and CANsync
slave y can request actual value message frame 2.

There are two options for the request number of the CANsync slave: The first one is to state directly the
slave number in the control register. While this register is not changed, the system addresses the same
CANsync slave in each CANsync interval.

If you enter 16#80 as the request number, the CANsync interface module automatically increments the
slave number by 1 in each CANsync interval until the maximum slave number (*.b_MAX_SL_NR) is re-
ached. Polling then starts again at slave number 0. This makes possible automatic requesting of the ac-
tual value message frames of all the CANsync slaves that are present. If you assign noncontiguous slave
numbers to CANsync slaves, the system generates an actual value request for the CANsync slaves that
are not present but this does not lead to any functional problems.
154 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
Command and Response Channel

Configuring the Command Channel

The command channel is configured in the following registers.

(* Corresponds, for example, to _CANsync_CTRL_MA).

Explanation of configuration of the command channel

Using configuration registers *.b_SL_NR_CONTROLWORD, *.b_SL_NR_PARAMETER and
*.b_SL_NR_UPDOWN, you can set the use of the command channel. The normal setting is that all three
registers are set to 16#80. In this case, the system cyclically increments the slave numbers of the CAN-
sync slaves for which command message frames may be generated. The maximum slave number is the
same as for actual value request (*.b_MAX_SL_NR).

As an alternative, you can explicitly specify the slave number. In this case, the system only checks whe-
ther the corresponding command should be generated for this CANsync slave.

In any one CANsync interval, it is only possible to send one command. The following scheme indicates
the sequence in which the system polls particular areas in synchronous operation and whether an order
for generating a commands is entered. The various commands are explained in the next few sections.

Register Contents

*.b_SL_NR_CONTROLWORD Slave number of the CANsync slave for control word
command

*.b_SL_NR_ PARAMETER Slave number of the CANsync slave for parameter word
command

*.b_SL_NR_UPDOWN Slave number of the CANsync slave
for the upload/download command
Control Engineering �mega Drive-Line II 155
Baumüller Nürnber g GmbH 5.00005.02

CANsync
(* Corresponds, for example, to _CANsync_CTRL_MA).
156 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
The scheme shows you which jobs are treated with higher priority (e.g. broadcast commands), which
jobs can block other jobs and the number of CANsync intervals at the latest after which the system pro-
cesses a job. Broadcast command 0 has the highest priority: it is sent immediately in this CANsync in-
terval. The system only checks the next area if no job is entered in this area. The system ignores the
pre-event history. This means that if a job is entered in broadcast area 0 in every CANsync interval, no
other commands are sent.

Broadcast Command

Broadcast commands can be sent using the following registers:

(* Corresponds, for example, to _CANsync_CTRL_MA).

(* Corresponds, for example, to _CANsync_CTRL_MA).

(* Corresponds, for example, to _CANsync_CTRL_MA).

In bit strip *.d_SL_MASK_BC0, *.d_SL_MASK_BC1, *.d_SL_MASK_BC2, you state the CANsync sla-
ves for which the action command is specified. Each CANsync slave has a bit assigned to it (bit 0 = slave
0; bit 1 = slave 1; ... bit 31 = slave 31).

When the bit = TRUE, the associated CANsync slave carries out the command.

In addition to transferring a command, it is also possible to transfer a data byte (*.b_DATA_BYTE...) and
a data word (*.w_DATA_WORD...).

To be able to send a command, 16#05 must be entered in the control register. The CANsync interface
module then returns 16#04 to confirm sending.

Register Contents

*.b_CTRL_REG_BC0 Control register of broadcast command 0

*.d_SL_MASK_BC0 Bit strip of broadcast command 0

*.b_CMD_BC0 Command byte of broadcast command 0

*.b_DATA_BYTE_BC0 Data byte 0 of broadcast command 0

*.w_DATA_WORD_BC0 Data word 1 of broadcast command 0 (DW)

Register Contents

*.b_CTRL_REG_BC1 Control register of broadcast command 1

*.d_SL_MASK_BC1 Bit strip of broadcast command 1

*.b_CMD_BC1 Command byte of broadcast command 1

*.b_DATA_BYTE_BC1 Data byte 0 of broadcast command 1

*.w_DATA_WORD_BC1 Data word 1 of broadcast command 1 (DW)

Register Contents

*.b_CTRL_REG_BC2 Control register of broadcast command 2

*.d_SL_MASK_BC2 Bit strip of broadcast command 2

*.b_CMD_BC2 Command byte of broadcast command 2

*.b_DATA_BYTE_BC2 Data byte 0 of broadcast command 2 (DB)

*.w_DATA_WORD_BC2 Data word 1 of broadcast command 2 (DW)
Control Engineering �mega Drive-Line II 157
Baumüller Nürnber g GmbH 5.00005.02

CANsync
List of Commands

Control word command

The control word command is sent using the following registers.

(* Corresponds, for example, to _CANsync_CTRL_MA).

To be able to send a control word to a CANsync slave, the system must enter the control word in the
area *.a_CONTROLWORD_SL[0] onwards and then enter 16#05 to the corresponding control register
from *.a_STEUREG_CONTROLWORD[0] onwards. When the control word has been sent, the system
returns 16#04 as the acknowledgement.

Example: Sending a control word to CANsync slave 3:

1. Enter control word in *.a_CONTROLWORD_SL[3].

2. Enter 16#05 in control register *.a_STEUREG_CONTROLWORD[3].

Acknowledgement after sending: 16#04 to *.a_STEUREG_CONTROLWORD[3].

(* Corresponds, for example, to _CANsync_CTRL_MA).

On the CANsync bus, the control word command is mapped to an action command in which, in the bit
mask (bit strip), only the bit for one CANsync slave is set, the command byte is set to 16#01 and the
control word is entered as the data word (DW).

Command byte Command

16#01 Control word
DB = Not used
DW = Control word

16#02 - 16#FF Reserved

Register Contents

*.a_STEUREG_CONTROLWORD[0] Control register of control word for slave 0

*.a_STEUREG_CONTROLWORD[1] Control register of control word for slave 1

*.a_STEUREG_CONTROLWORD[2] Control register of control word for slave 2

*.a_STEUREG_CONTROLWORD[3] Control register of control word for slave 3

... ...

*.a_STEUREG_CONTROLWORD[31] Control register of control word for slave 31

Register Contents

*.a_CONTROLWORD_SL[0] Control word for slave 0

*.a_CONTROLWORD_SL[1] Control word for slave 1

*.a_CONTROLWORD_SL[2] Control word for slave 2

*.a_CONTROLWORD_SL[3] Control word for slave 3

... ...

*.a_CONTROLWORD_SL[31] Control word for slave 31
158 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
Parameter command

You can read and write parameters using the following registers:

(* Corresponds, for example, to _CANsync_CTRL_MA).

Meanings of the control and status register:

(* Corresponds, for example, to _CANsync_CTRL_MA).

Register Contents

*.a_CTRLREG_PAR_CMD_SL[0].b_STEUREG_PAR_CMD Control register of parameter command 0

*.a_CTRLREG_PAR_CMD_SL[0].b_STATREG_PAR_CMD Status register of parameter command 0

*.a_CTRLREG_PAR_CMD_SL[1].b_STEUREG_PAR_CMD Control register of parameter command 1

*.a_CTRLREG_PAR_CMD_SL[1].b_STATREG_PAR_CMD Status register of subslave command 1

... ...

*.a_CTRLREG_PAR_CMD_SL[31].b_STEUREG_PAR_CMD Control register of parameter command 31

*.a_CTRLREG_PAR_CMD_SL[31].b_STATREG_PAR_CMD Status register of parameter command 31

Bit 0 Active
Must be set to 1 to start the command
Is set to 0 when a response was received

Bit 1 Read
=1: Read parameter

Bit 2 Write
=1: Write parameter

Bit 3 send
=1: Indication that the command has been sent

Bit 4 Format
0: Parameter is of word format
1: Parameter is of doubleword format

Bit 5 Error display
1: Error occurred
0: No error

Bit 6 Busy
= 1 CANsync slave is processing the job, the data is not yet valid

Bit 7 Reserved

Register Contents

*.a_DATA_PARAMETER[0].d_PAR_VALUE
*.a_DATA_PARAMETER[0].w_PAR_NR
*.a_DATA_PARAMETER[0].w_SUBSL_ADR

Data of CANsync slave 0
Parameter number 0
Reserved

*.a_DATA_PARAMETER[1].d_PAR_VALUE
*.a_DATA_PARAMETER[1].w_PAR_NR
*.a_DATA_PARAMETER[1].w_SUBSL_ADR

Data of CANsync slave 1
Parameter number 1
Reserved

... ...

*.a_DATA_PARAMETER[31].d_PAR_VALUE
*.a_DATA_PARAMETER[31].w_PAR_NR
*.a_DATA_PARAMETER[31].w_SUBSL_ADR

Data of CANsync slave 31
Parameter number 31
Reserved
Control Engineering �mega Drive-Line II 159
Baumüller Nürnber g GmbH 5.00005.02

CANsync
The system enters or receives the parameter value under Data of CANsync slave x. This value can be
a word or a doubleword.

The parameter number selects a parameter in the addressed CANsync slave. Refer to the description
of the CANsync slave for the meaning of the parameter.

Sequence of a parameter access

The parameter commands can be used in the CANsync event task as well as in the rest of the program.
To ensure data consistency, the system allocates jobs and evaluates the response via the control regi-
ster and the status register. To guarantee that the job is carried out without conflicts, first the control re-
gister and then the status register must always be read from the application program and if a new value
is written, the program must always first set the status register and then the control register. (The control
register is the crucial one for the CANsync interface module).

In the following explanation, the addresses refer to CANsync slave 0.

For a write parameter job, you enter
the data value in *.a_DATA_PARAMETER[0].d_PAR_VALUE (doubleword) and
the parameter number in *.a_DATA_PARAMETER[0].w_PAR_NR

After this, you enter the value 16#05 in status register
*.a_CTRLREG_PAR_CMD_SL[0].b_STATREG_PAR_CMD and in control register
*.a_CTRLREG_PAR_CMD_SL[0].b_STEUREG_PAR_CMD if the system is to write a word parameter
or 16#15 if it is to write a doubleword parameter.

When the CAN interface module has taken over the job (in accordance with “Configuring the Command
Channel” on page 155) the system confirms by setting bit 3 (send) in the control register and in the status
register.

If the CANsync slave has accepted the job but has not yet completed it, the system sets bit 6 (busy).

If an error occurs in the CANsync slave while it is carrying out the job, the system sets bit 5 (error dis-
play), clears bit 6 (busy) and bit 0 (active); and the error number can be read in data range
*.a_DATA_PARAMETER[0].d_PAR_VALUE.

When the CANsync slave has completed the job the system sets bit 6 (busy) and clears bit 0 (active); in
the byte, this results in 16x04 for write word or 04x14 for write doubleword.

The eva lua tion in the app lication program can be lim ited to polling b it 0 ; w hile the b it is set, the system continues
to process the job and w hen it is rese t, the job is com ple ted.

It may well be that bit 6 (busy) is not set if the CANsync slave can respond to the job immediately.

The read parameter job runs in a similar way with the only differences being that the command is 16#03
for read word and 16#13 for read doubleword and that the system does not enter the data before the job,
but rather that it is available for reading out after the system cleared bit 0 (active). In the byte the ack-
nowledgement then reads 16#02 for word access and 16#12 fo doubleword access. The system takes
the format from the CANsync slave's response.

Error number of the CANsync slave

Value Meaning

16#0000 No error occurred

16#FFFF Error occurred

16#FFFE Value less than minimum value

16#FFFD Value greater than maximum value

16#FFFC Element cannot be changed

16#FFFB Element not present

16#FFFA Data is not available (e.g. being processed)

16#FFF9 Error in data format
160 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
Upload/Download Block Area

Upload and download jobs can be controlled using the following registers:

(* Corresponds, for example, to _CANsync_CTRL_MA).

Block 0 is reserved for the OmegaOS .

Meanings of the control and status register

Register Contents

*.b_STEUREG_UPDOWNBLK0 Reserved

*.b_STATREG_UPDOWNBLK0 Reserved

*.b_SL_NR_UPDOWNBLK0 Reserved

*.w_ERR_NR_UPDOWNBLK0 Reserved

*.w_SUBSL_NR_UPDOWNBLK0 Reserved

*.d_BASE_ADR_UPDOWNBLK0 Reserved

*.w_LENGTH_UPDOWNBLK0 Reserved

*.w_COUNTER_UPDOWNBLK0 Reserved

*.a_DATA_UPDOWNBLK0[0 to 74] Reserved

*.b_STEUREG_UPDOWNBLK1 Control register of up/down block 1

*.b_STATREG_UPDOWNBLK1 Status register of up/down block 1

*.b_SL_NR_UPDOWNBLK1 CANsync slave number of up/down block 1

*.w_ERR_NR_UPDOWNBLK1 Error number of up/down block 1

*.w_SUBSL_NR_UPDOWNBLK1 Sub-slave number of up/down block 1

*.d_BASE_ADR_UPDOWNBLK1 Base address of up/down block 1

*.w_LENGTH_UPDOWNBLK1 Length in bytes of up/down block 1

*.w_COUNTER_UPDOWNBLK1 Counter of up/down block 1

*.a_DATA_UPDOWNBLK1[0 to 74] Data block of up/down block 1 (75 doublewords)

NOTE

Bit 0 Active
Must be set to 1 to start the command
Is set to 0 when the command is being processed

Bit 1 send
=1: Indication that the command has been sent

Bit 2 Mode
Bit3 bit2

0 0: reserved
0 1: initialization
1 0: ongoing upload/download
1 1: End of block

Bit 3

Bit 4 Upload/download
0: Upload
1: Download
Control Engineering �mega Drive-Line II 161
Baumüller Nürnber g GmbH 5.00005.02

CANsync
Sequence of an Upload/Download Job in Block 1

The upload/download commands can be used in the CANsync event task as well as in the rest of the
program. To ensure data consistency, the system allocates jobs and evaluates the response via the con-
trol register and the status register. To guarantee that the job is carried out without conflicts, first the con-
trol register and then the status register must always be read from the application program and if a new
value is written, the program must always first set the status register and then the control register. (The
control register is the crucial one for the CANsync interface module).

For a download, the system first fills data block area *.a_DATA_UPDOWNBLK1[0] to
*.a_DATA_UPDOWNBLK1[74] with the data to be transferred.The maximum block length that can be
sent with one download job is 300 bytes (75 doublewords).

The number of the CANsync slaves that is to receive the download is entered in
*.b_SL_NR_UPDOWNBLK1 and the base address is entered in *.d_BASE_ADR_UPDOWNBLK1.

Base addresses 16#0000_0000 to 16#0000_00FF are reserved for operating system jobs.

After this, you enter the value 16#15 in status register *.b_STATREG_UPDOWNBLK1 and in control re-
gister *.b_STEUREG_UPDOWNBLK1.

The CANsync interface module will now try to transfer the entire block to the CANsync slave. The system
automatically generates the sequential modes. The progress can be read off the byte counter in
*.w_COUNTER_UPDOWNBLK1.

When the CANsync interface module has taken over the job (See “Configuring the Command Channel”
on page 155.) the system confirms by setting bit (send) in the control register and in the status register.

If the CANsync slave has accepted the job but has not yet completed it, the system sets bit 6 (busy).

If an error occurs in the CANsync slave while it is carrying out the job, the system sets bit 5 (error dis-
play), clears bit 6 (busy) and bit 0 (active); and the error number can be read in
*.b_SL_NR_UPDOWNBLK1.

When the CANsync slave has completed the job the system sets bit 6 (busy) and clears bit 0 (active); in
the control and status register, this results in 16#1C.

The evaluation in the application program can be limited to polling bit 0 (active). While the bit is set, the
system continues to process the job and when it is reset, the job is completed.

It may well be that bit 6 (busy) is not set if the CANsync slave can respond to the individual modes of the
job immediately.

The upload job runs in a similar way with the only differences being that the command is 16#05 and that
the data is available for reading out after bit 0 (active) has been cleared rather than before the job has
been entered. The acknowledgement in the control and status register then reads 16#0C.

You can cancel an upload/download job by setting bit 7 (reset) to TRUE. The system then sends to the
CANsync slave an upload initialization message frame with address = 0 and length = 0.

Bit 5 Error display
1: Error occurred
0: No error

Bit 6 busy
= 1 CANsync slave is processing the job, the data is not yet valid

Bit 7 Reset
Cancellation of a job
162 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
Upload/Download Error Numbers

CANsync Slave Status

(* Corresponds, for example, to _CANsync_CTRL_MA).

Meaning of CANsync slave status:

In set-up mode (see “Initialization:” on page 142), the system polls the slave status of all the initialized
CANsync slaves and enters it here. Bit 0 (response) indicates that the CANsync slave has logged on to
the CANsync bus. Bit 1 (synchronized) indicates that the CANsync slave is synchronized and that syn-
chronous operation can be started.

Error number Meaning

16#0001 CANsync slave acknowledges wrong block number

16#0002 Entered length greater than 300 bytes

...

16#0100 CANsync slave expects block with the number that is entered in the counter

16#0101 CANsync slave expects block end

16#0102 CANsync slave does not yet expect block end

16#0103 CANsync slave cancels upload/download

16#0104 Upload/download not possible

16#0105 Base address not allowed

16#0106 Reserved

16#0107 Block length > CANsync slave's maximum block length

16#0108 Message frame mode error (mode not allowed at this stage)

Register Contents

*.a_STAT_SL[0] CANsync slave status 0

*.a_STAT_SL[1] CANsync slave status 1

*.a_STAT_SL[2] CANsync slave status 2

... ...

*.a_STAT_SL[31] CANsync slave status 31

Bit 0 Response
= 1: CANsync slave responds

Bit 1 SYNCHRONIZED
= 1: CANsync slave is synchronized

Bit 2

Reserved
Bit 3

Bit 4

Bit 5

Bit 6

Bit 7
Control Engineering �mega Drive-Line II 163
Baumüller Nürnber g GmbH 5.00005.02

CANsync
7.2.3 Register Structure and Function of the �mega CANsync Slave

In the following sections, we will explain the register structure of communication RAM in the �mega
CANsync slave.

To allow you to access registers of the communication RAM in the PROPROG wt II project, data types
are defined that map the register structure. The system uses these data types to declare variables that
are assigned to the CANsync interface module's base address.

After this, it is possible to access the registers of communication RAM via the structure elements of the
declared variables.

At initialization of the CANsync slave interface module, the registers in communication RAM have a dif-
ferent meaning than after initialization in cyclical operation.

This means that, for initialization there is the

CANsync_INIT_BMSTRUCT

and for cyclical operation, the

CANsync_SL_CTRL_BMSTRUCT

These structures are defined from library BM_TYPES_20bd00 onwards. After you have integrated libra-
ry BM_TYPES_20bd00 in the project, the data types are available.

These structures contain

� 8-bit elements,

� 16-bit elements,

� 32-bit elements,

� Structures from the elements mentioned above

� Fields (ARRAY) and structures from the elements and structures mentioned above

Short designations have been prepended to the data types (8-, 16-, 32-bit elements, structures and
fields) that are used in a structure. This is for the sake of clarity when using the structures in pro-
gramming.

Other data types that are not used in the structures include:

Data type Short designation Number of bits

BYTE b 8

WORD W 16

DWORD (double word) d 32

SINT (short integer) Si 8

DINT (double integer) di 32

USINT (unsigned short integer) us 8

UINT (unsigned integer) u 16

UDINT (unsigned double integer) ud 32

STRUCT _ (underline) -

ARRAY a -

Data type Short designation Number of bits

BOOL (bit) X 1

TIME t -
164 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
Explanation of declaring the global variables

For initialization, you create a global variable of data type CANsync_INIT_BMSTRUCT. You must assign
this variable via declaration of global variables to the base address of the CANsync interface module.

Example:

CANsync interface module 1 (node 1) in �mega Drive-Line II

_CANsync_INIT_SL AT %MB3.100000 : CANsync_INIT_BMSTRUCT;

Where:

CANsync_INIT_ SL is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_INIT_BMSTRUCT is the data type
%MB3.100000 is the base address of the CANsync 1 interface module

on the �mega Drive-Line II.

For cyclical operation, you crea te a global variable o f data type CANsync_SL_CTRL_BM STRUCT. You must
assign this variab le via declaration of globa l variables to the base address of the CANsync inte rface m odule.

Example:

CANsync interface module 1 (node 1) in �mega Drive-Line II

_CANsync_CTRL_SL AT %MB3.100000 : CANsync_SL_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_ SL is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_SL_CTRL_BMSTRUCT is the data type
%MB3.100000 is the base address of the CANsync 1 interface module

on the �mega Drive-Line II.

In the following tables, the variable name is replaced by an asterisk (*).

This means that you access register *.w_CPU_CONTROL via

_CANsync_INIT_SL.w_CPU_CONTROL,

you access *.w_OPTION_STATUS via

_CANsync_INIT_SL.w_OPTION_STATUS .

Where:

CANsync_INIT_ SL is the variable name with the data type short designati-
on "_" for STRUCT

w_CPU_CONTROL is the control register of the CANsync interface module
with data type short designation "w" for WORD

NOTE
Control Engineering �mega Drive-Line II 165
Baumüller Nürnber g GmbH 5.00005.02

CANsync
Registers *.w_CPU_CONTROL and *.w_OPTION_STATUS can also be triggered via the struc-
ture for cyclical operation. This makes possible access via

_CANsync_CTRL_SL.w_CPU_CONTROL and

_CANsync_CTRL_SL.w_OPTION_STATUS .

Where

CANsync_CTRL_ SL is the variable name with the data type short designati-
on "_" for STRUCT

w_CPU_CONTROL is the status register of the CANsync interface module
with data type short designation "w" for WORD

Example of accessing an element of a field that is used in the structure:

According to the table:*.a_WR_VALUE_RECEIVE[3]

Access: _CANsync_CTRL_SL.a_WR_VALUE_RECEIVE[3]

Where

CANsync_CTRL_ SL is the variable name with the data type short designati-
on "_" for STRUCT

a_WR_VALUE_RECEIVE[3] is the register for reference value 3 with the data type
short designation "a" for ARRAY. The data type of the
elements of the field (of the reference values) is taken
from the corresponding table and the description.

Example of accessing an element of a two-dimensional field that is used in the structure:

According to the table:*.a_RD_VALUE[5][7]

Access: _CANsync_CTRL_SL.a_RD_VALUE[5][7]

Where

CANsync_CTRL_ SL is the variable name with the data type short designati-
on "_" for STRUCT

a_RD_VALUE[5][7] is the register for actual value 7 of CANsync slave 5
with the data type short designation "a" for ARRAY. The
data type of the elements of the field (of the reference
values) is taken from the corresponding table and the
description.

Example of accessing an element a (sub) structure, which is itself a field that is used in the structure:

According to the table:*.a_CFG_RDC_WORD[31].b_CFG_RDC2_WORD3

Access:_CANsync_CTRL_SL.a_CFG_RDC_WORD[31].b_CFG_RDC2_WORD3

Where

CANsync_CTRL_ SL is the variable name with the data type short designati-
on "_" for STRUCT
166 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
a_CFG_RDC_WORD[31] is the field containing the configuration data for map-
ping the words of CANsync slave 31's actual value
message frames with the data type short designation
"a" for ARRAY

b_CFG_RDC2_WORD3 is the register for the configuration data for mapping the
third word of actual value message frame 2 (of CAN-
sync slave 31) with the data type short designation "b"
for BYTE

Example of accessing an element of a (sub) structure that is used in the structure:

According to the table:*._CFG_WRC_WORD.b_CFG_WRC1_WORD0

Access: _CANsync_CTRL_SL._CFG_WRC_WORD.b_CFG_WRC1_WORD0

Where

CANsync_CTRL_ SL is the variable name with the data type short designati-
on "_" for STRUCT

_CFG_WRC_WORD is the structure containing the configuration data for
mapping the words of the reference value message fra-
mes with the data type short designation "_" for
STRUCT

b_CFG_WRC1_WORD0 is the register for the configuration data for mapping the
0th word of reference value message frame 1 with the
data type short designation "b" for BYTE

General Registers of the CANsync Interface Module

CANsync status

Each time the CANsync processor cycle is run through, the system outputs the CANsync status to
*.w_CAN_STATUS.

Meaning:

Register Contents

*.w_CANsync_STATUS CANsync-Status

*.w_OMEGA_NR The �mega number set using a DIP switch

*.i_SW1_NR Card software number

*.i_SW1_RELEASE Software revision incompatible and compatible

Bit No. Meaning (bit = TRUE)

0 Reserved

1 Overrun: A CANsync message could not be received

2 CANsync send buffer is free

3 CANsync send job executed successfully

4 CANsync message currently being received
Control Engineering �mega Drive-Line II 167
Baumüller Nürnber g GmbH 5.00005.02

CANsync
�mega number

In register *.w_OMEGA_NR, the system displays the �mega number that was set using the DIP switch
(S33). In the case of a CANsync slave interface module, this number is the slave number.

Software number and software version

In register *.i_SW1_NR, the system displays the number of the CANsync software on the �mega Drive-
Line II.

In register *.i_SW1_RELEASE, the system displays the compatible and the incompatible revision of the
CANsync software on the �mega Drive-Line II.

Initialization

For initialization, you create a global variable of data type CANsync_INIT_BMSTRUCT. You must assign
this variable via declaration of global variables to the base address of the CANsync interface module.

Example:

CANsync interface module 1 (node 1) in �mega Drive-Line II

_CANsync_INIT_SL AT %MB3.100000 : CANsync_INIT_BMSTRUCT;

Where:

CANsync_INIT_ SL is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_INIT_BMSTRUCT is the data type
%MB3.100000 is the base address of the CANsync 1 interface module

on the �mega Drive-Line II.

In addition, you carry out configuration for synchronous operation:

5 CANsync message currently being sent

6 Error present (warning)

7 CANsync node is deactivated (BUS off)

8-15 Reserved

Meaning Register Value

Baud rate For example: 500 kbps *.b_BT_0
*.b_BT_1

16#00
16#1C

CANsync interval For example: 2 ms *.b_TIME_PATTERN 16#02

Acceptance Code All message frames *.b_AC 16#FF

Acceptance Mask *.b_AM 16#FF

Output Control 16#FA *.b_OUTPUT_CONTROL 16#FA

Clock Divider 16#07 *.b_CLOCK_DIVIDER 16#07

Slave/Master Slave *.b_MA_SL_MODE 16#01

Bit No. Meaning (bit = TRUE)
168 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
You set the operating mode via register *.w_CPU_CONTROL. The system displays the currently active
operating mode in register *.w_OPTION_STATUS. You can change the operating mode even after it has
been started successfully.

(* at initialization, corresponds to _CANsync_INIT_SL, for example; after initialization, corre-
sponds to _CANsync_CTRL_SL) for example

Initialization is carried out using commands 16#0000, 16#0001 and 16#0002 to *.w_CPU_CONTROL.
This starts set-up mode. After this, you can enable active operation. This is done by setting bit 6 in
.w_CPU_CONTROL (.w_CPU_CONTROL = 16#0040).

If you set bit 7 of *.w_CPU_CONTROL, the CANsync controller is reset and the bit is cleared. This makes
it possible to reset the CANsync controller's BUS-OFF status and to send and receive CANsync messa-
ge frames again. The system displays the BUS-OFF status in *.w_CANsync_STATUS (See “General
Registers of the CANsync Interface Module” on page 167.).

Register Contents

*.w_CPU_CONTROL Control register of CANsync interface module

*.w_OPTION_STATUS Status register of CANsync interface module

Control register
of CANsync
interface
module

Meaning

16#0000 Cold restart

16#0001 Test Handshake

16#0002 Take over initialization data

16#0012 Reserved

16#0013 Reserved

16#0020 Start synchronous operating mode

16#0040 Enable active operation

16#0080 (Bit 7 = TRUE) Reset CAN controller

Status register
of CANsync
interface
module

Meaning

16#0001 Start up

16#0002 Take over waiting for initialization data

16#0003 Waiting for start

16#0011 Reserved

16#0012 Reserved

16#0013 Setting up synchronous operation of CANsync slave

16#0020 Synchronous operation of CANsync slave is active

16#0041 Reserved

16#0042 Reserved

16#0043 Setting up synchronous operation of CANsync master

16#0080 Synchronous operation of CANsync master is active
Control Engineering �mega Drive-Line II 169
Baumüller Nürnber g GmbH 5.00005.02

CANsync
The following table lists the registers that can be operated at initialization.

(* At initialization, corresponds to structure _CANsync_INIT_SL, for example)

Reference Values

Reference values are received in the CANsync event task.

(* Corresponds, for example, to _CANsync_CTRL_SL).

In the status register of the reference value channels, 16#02 is used to report that the respective refe-
rence value message frame was received.

Reference value message frames are configured using the following registers.

(* Corresponds, for example, to _CANsync_CTRL_SL).

Register Contents

*.b_MA_SL_MODE O p era ting m o de : M aster/s lave (S YN C -O U T/S YN C -IN)

*.b_AC Acceptance Code of the CANsync controller

*.b_AM Acceptance Mask of the CANsync controller

*.b_BT_0 Bit timing register 0 of the CANsync controller

*.b_BT_1 Bit timing register 1 of the CANsync controller

*.b_OUTPUT_CONTROL Output control register of the CANsync controller

*.b_CLOCK_DIVIDER Clock divider of the CANsync controller

*.b_TIME_PATTERN CANsync interval in ms

Register Contents

*.b_CTRLREG_WRC1 Status register of reference value channel 1

*.b_CTRLREG_WRC2 Status register of reference value channel 2

*.b_CTRLREG_WRC3 Reserved

*.b_CTRLREG_WRC4 Reserved

Register Contents

*._CFG_WRC_WORD.b_CFG_WRC1_WORD0 C onfigu ration of re fe ren ce va lu e m essag e fram e 1 w ord 0

*._CFG_WRC_WORD.b_CFG_WRC1_WORD1 C onfigu ration of re fe ren ce va lu e m essag e fram e 1 w ord 1

*._CFG_WRC_WORD.b_CFG_WRC1_WORD2 C onfigu ration of re fe ren ce va lu e m essag e fram e 1 w ord 2

*._CFG_WRC_WORD.b_CFG_WRC1_WORD3 C onfigu ration of re fe ren ce va lu e m essag e fram e 1 w ord 3

*._CFG_WRC_WORD.b_CFG_WRC2_WORD0 C onfigu ration of re fe ren ce va lu e m essag e fram e 2 w ord 0

*._CFG_WRC_WORD.b_CFG_WRC2_WORD1 C onfigu ration of re fe ren ce va lu e m essag e fram e 2 w ord 1

*._CFG_WRC_WORD.b_CFG_WRC2_WORD2 C onfigu ration of re fe ren ce va lu e m essag e fram e 2 w ord 2

*._CFG_WRC_WORD.b_CFG_WRC2_WORD3 C onfigu ration of re fe ren ce va lu e m essag e fram e 2 w ord 3

*._CFG_WRC_WORD.b_CFG_WRC3_WORD0 Reserved

*._CFG_WRC_WORD.b_CFG_WRC3_WORD1 Reserved

*._CFG_WRC_WORD.b_CFG_WRC3_WORD2 Reserved

*._CFG_WRC_WORD.b_CFG_WRC3_WORD3 Reserved

*._CFG_WRC_WORD.b_CFG_WRC4_WORD0 Reserved

*._CFG_WRC_WORD.b_CFG_WRC4_WORD1 Reserved

*._CFG_WRC_WORD.b_CFG_WRC4_WORD2 Reserved

*._CFG_WRC_WORD.b_CFG_WRC4_WORD3 Reserved
170 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
With the configuration, you state which reference value is to be read at what location (..._WORD0, ...,
..._WORD3) in the reference value message frame (..._WRC1_..., ..._WRC2_...)

Meaning

One word of the message frame is only not used if the following settings are
made: reference value number = 0, highword/lowword = 0 and assigned = 0.

Bit 0 Assigned
If = 1, the system uses this word of the message frame

Bit 1 Highword/lowword
If = 1, the system enters the highword of the reference value

Bit 2
Reference value number
Number of reference value 0 to 15

Bit 3

Bit 4

Bit 5

Bit 6 Reserved

Bit 7

NOTE
Control Engineering �mega Drive-Line II 171
Baumüller Nürnber g GmbH 5.00005.02

CANsync
Example:

(* Corresponds, for example, to _CANsync_CTRL_SL).

This setting enters word 0 of reference value message frame 1 as the lowword of reference value 3.

(* Corresponds, for example, to _CANsync_CTRL_SL).

*._CFG_WRC_WORD.b_CFG_WRC1_WORD0 = 16#0D 0 0 0 0 1 1 0 1

R R RV No. H/L B

Register Contents

*.a_WR_VALUE_RECEIVE[0] Reference value 0

*.a_WR_VALUE_RECEIVE[1] Reference value 1

*.a_WR_VALUE_RECEIVE[2] Reference value 2

*.a_WR_VALUE_RECEIVE[3] Reference value 3

*.a_WR_VALUE_RECEIVE[4] Reference value 4

*.a_WR_VALUE_RECEIVE[5] Reference value 5

*.a_WR_VALUE_RECEIVE[6] Reference value 6

*.a_WR_VALUE_RECEIVE[7] Reference value 7

*.a_WR_VALUE_RECEIVE[8] Reserved

... ...

*.d_WR_VALUE_RECEIVE[15] Reserved
172 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
The reference values can be word or doubleword reference values.

Explanation of the use of reference value channels

In synchronous operation, two reference value channels (channels 1 and 2; also WRC1 and WRC2) are
available.

Both reference value message frames consist of four words each (W0 to W3). After CANsync initializa-
tion, you must state at least once the assignment of these words.

This can be carried out in the initialization program. To do this, enter in areas
*._CFG_WRC_WORD.b_CFG_WRC1_WORD0 to *._CFG_WRC_WORD.b_CFG_WRC2_WORD3 for
each word of the reference value message frames the reference value that is to be received at this lo-
cation. Valid reference value numbers are in the range 0 to 7. For doubleword reference values, you
must use two words in the message frame.

You can change the configuration even during active operation. The system applies the change in the
next CANsync interval at the latest. At the start of the CANsync interval, the CANsync interface module
reads the configuration data.

The system carries out reference value message frame evaluation at the start of the CANsync interval.
For this, you poll the status registers (control registers) of the reference value channels
(*.b_CTRLREG_WRC1 to *.b_CTRLREG_WRC2). The system enters 16#02 in these registers if the
corresponding reference value message frame was received. Then, you can read out the reference va-
lues from registers *.a_WR_VALUE_RECEIVE[0] to *.a_WR_VALUE_RECEIVE[7] and set the status
register to 16#00, for example, to be able to detect correctly the next entry.

You must assign in accordance with the reference value configuration in the application program the re-
ference values that must be read when a reference value message frame has been received.

If a reference value m essage fram e fails tha t contains a position re fe rence va lue from the v irtua l lead ing
ax le, for exam ple, the app lica tion program m ust carry ou t ex trapo lation sta rting from the last position re fe -
rence va lue . If the re fe rence value fa ils severa l tim es in succession , a fau lt response m ust be triggered.

Actual values of the CANsync slave

Actual values are sent in the CANsync event task.

(* Corresponds, for example, to _CANsync_CTRL_MA).

In the control register, the system marks with 16#05 the fact that new actual values for the respective
actual value message frame were entered and that the message frame will be sent. The CANsync inter-
face module acknowledges the command with 16#04.

Register Contents

*.b_CTRLREG_RD_RDC1 Control register of actual value channel 1

*.b_CTRLREG_RD_RDC2 Control register of actual value channel 2

*.b_CTRLREG_RD_RDC3 Reserved

*.b_CTRLREG_RD_RDC4 Reserved
Control Engineering �mega Drive-Line II 173
Baumüller Nürnber g GmbH 5.00005.02

CANsync
Actual value message frames are configured using the following registers.

(* Corresponds, for example, to _CANsync_CTRL_MA).

Your configuration tells the system which actual value is to be entered at which location in the actual
value message frame.

Meaning

One word of the message frame is only not used if the following settings are
made: actual value number = 0, highword/lowword = 0 and assigned = 0.

Register Contents

*._CFG_RDC_WORD.b_CFG_RDC1_WORD0 Configuration of actual value message frame 1 word 0

*._CFG_RDC_WORD.b_CFG_RDC1_WORD1 Configuration of actual value message frame 1 word 1

*._CFG_RDC_WORD.b_CFG_RDC1_WORD2 Configuration of actual value message frame 1 word 2

*._CFG_RDC_WORD.b_CFG_RDC1_WORD3 Configuration of actual value message frame 1 word 3

*._CFG_RDC_WORD.b_CFG_RDC2_WORD0 Configuration of actual value message frame 2 word 0

*._CFG_RDC_WORD.b_CFG_RDC2_WORD1 Configuration of actual value message frame 2 word 1

*._CFG_RDC_WORD.b_CFG_RDC2_WORD2 Configuration of actual value message frame 2 word 2

*._CFG_RDC_WORD.b_CFG_RDC2_WORD3 Configuration of actual value message frame 2 word 3

*._CFG_RDC_WORD.b_CFG_RDC3_WORD0 Reserved

*._CFG_RDC_WORD.b_CFG_RDC3_WORD1 Reserved

*._CFG_RDC_WORD.b_CFG_RDC3_WORD2 Reserved

*._CFG_RDC_WORD.b_CFG_RDC3_WORD3 Reserved

*._CFG_RDC_WORD.b_CFG_RDC4_WORD0 Reserved

*._CFG_RDC_WORD.b_CFG_RDC4_WORD1 Reserved

*._CFG_RDC_WORD.b_CFG_RDC4_WORD2 Reserved

*._CFG_RDC_WORD.b_CFG_RDC4_WORD3 Reserved

Bit 0 Assigned
If = 1, the system uses this word of the message frame

Bit 1 Highword/lowword
If = 1, the system enters the highword of the actual value

Bit 2
Actual value number
Number of actual value 0 to 15

Bit 3

Bit 4

Bit 5

Bit 6 Reserved

Bit 7

NOTE
174 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
Example:

(* Corresponds, for example, to _CANsync_CTRL_SL).

This setting enters the lowword of actual value 3 in actual value message frame 1 in word 0.

*._CFG_RDC_WORD.b_CFG_RDC1_WORD0 = 16#0D 0 0 0 0 1 1 0 1

R R AV No. H/L B

Register Contents

*.a_RD_VALUE_SEND[0] Actual value 0

*.a_RD_VALUE_SEND[1] Actual value 1

*.a_RD_VALUE_SEND[2] Actual value 2

*.a_RD_VALUE_SEND[3] Actual value 3

*.a_RD_VALUE_SEND[4] Actual value 4

*.a_RD_VALUE_SEND[5] Actual value 5

*.a_RD_VALUE_SEND[6] Actual value 6

*.a_RD_VALUE_SEND[7] Actual value 7

*.a_RD_VALUE_SEND[8] Reserved

... ...
Control Engineering �mega Drive-Line II 175
Baumüller Nürnber g GmbH 5.00005.02

CANsync
(* Corresponds, for example, to _CANsync_CTRL_SL).

The actual values can be word or doubleword actual values.

Explanation of the use of actual value channels

In synchronous operation, two actual value channels (channels 1 and 2; also RDC1 and RDC2) are
available. Actual value message frames 1 and 2 of this CANsync slave are sent to the CANsync master
on actual value channels 1 and 2.

Both actual value message frames consist of four words each (W0 to W3). After CANsync initialization,
you must state at least once the assignment of these words.

This can be carried out in the initialization program. To do this, enter in areas
*._CFG_RDC_WORD.b_CFG_RDC1_WORD0 to *._CFG_RDC_WORD.b_CFG_RDC2_WORD3 for
each word of the actual value message frames the actual value that is to be transferred at this location.
Valid actual value numbers are in the range 0 to 7. For doubleword actual values, you must use two
words in the message frame.

You can change the configuration even during active operation. The system applies the change in the
next CANsync interval at the latest. The system reads the CANsync interface module's configuration
data when the corresponding actual value message frame is received.

CANsync slaves cannot themselves trigger sending of their actual values, but rather, the CANsync ma-
ster uses the identifier of the reference value message frame to request a CANsync slave's actual valu-
es.

To ensure that the current actual values are always sent, the actual value entry must be made at the
start of the CANsync event task. The actual values for actual value message frame 1 must be entered
in registers *.a_RD_VALUE_SEND[0] to *.a_RD_VALUE_SEND[7] by approximately 490 µs after the
start of the CANsync event task. This is because the CANsync interface module starts preparing the ac-
tual value message frames then. To identify the fact that new actual values have been entered, the sy-
stem must enter 16#05 in the appropriate control register of the actual value channel
*.b_CTRLREG_RD_RDC1 to *.b_CTRLREG_RD_RDC2. This is the enable telling the CANsync inter-
face module that the actual values can be read and that the actual value message frame is being gene-
rated. If this enable is not issued by 490 µs after the start of the CANsync event task, actual value
message frame 1 is omitted in this CANsync interval. To acknowledge generation of the actual value
message frame, the CANsync interface module enters 16#04 in the control register. This allows users
to check whether the system finished entering the actual value in good time or not. If generation of the
actual value takes a relatively long time – from the start of the CANsync event task to execution of the
application program approximately 80 µs expire – the system must always generate the actual value for
the next CANsync interval and it only needs to copy the precalculated actual values to the corresponding
registers at the start of the new CANsync interval.

The time by which the actual values for actual value message frame 2 must be entered results from the
time of reception of reference value message frame 1 plus the processing time of reference value mes-
sage frame 1. The duration depends on the number of reference value words that have to be entered (a
total of between 800 µs and 1000 µs after the start of the CANsync event task). Signalling in the control
register is the same as for actual value message frame 1.

*.a_RD_VALUE_SEND[15] Reserved

Register Contents
176 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
Actual values of other CANsync slaves

The actual values of the other CANsync slaves are received in the CANsync event task.

(* Corresponds, for example, to _CANsync_CTRL_SL).

The system enters in the status register the slave numbers of the CANsync slaves from which an actual
value message frame was received.

(* Corresponds, for example, to _CANsync_CTRL_SL).

When the corresponding actual value message frame for a CANsync slave has arrived, the system en-
ters 16#02 in the actual value acknowledgement register.

You use the following registers to configure the actual value message frames of the other CANsync sla-
ves.

Register Contents

*.b_STATREG_RDC1 Status register of actual value channel 1

*.b_STATREG_RDC2 Status register of actual value channel 2

*.b_STATREG_RDC3 Reserved

*.b_STATREG_RDC4 Reserved

Register Contents

*.a_STATREG_RDC[0].b_STATREG_RDC1 Actual value acknowledgement of actual value channel
1 of slave 0

*.a_STATREG_RDC[0].b_STATREG_RDC2 Actual value acknowledgement of actual value channel
2 of slave 0

*.a_STATREG_RDC[0].b_STATREG_RDC3 Reserved

*.a_STATREG_RDC[0].b_STATREG_RDC4 Reserved

*.a_STATREG_RDC[1].b_STATREG_RDC1 Actual value acknowledgement of actual value channel
1 of slave 1

*.a_STATREG_RDC[1].b_STATREG_RDC2 Actual value acknowledgement of actual value channel
2 of slave 1

*.a_STATREG_RDC[1].b_STATREG_RDC3 Reserved

*.a_STATREG_RDC[1].b_STATREG_RDC4 Reserved

... ...

*.a_STATREG_RDC[31].b_STATREG_RDC1 Actual value acknowledgement of actual value channel
1 of slave 31

*.a_STATREG_RDC[31].b_STATREG_RDC2 Actual value acknowledgement of actual value channel
2 of slave 31

*.a_STATREG_RDC[31].b_STATREG_RDC3 Reserved

*.a_STATREG_RDC[31].b_STATREG_RDC4 Reserved

Register Contents

*.a_CFG_RDC_WORD[0].b_CFG_RDC1_WORD0 Configuration of actual value message frame 1 word 0
slave 0

*.a_CFG_RDC_WORD[0].b_CFG_RDC1_WORD1 Configuration of actual value message frame 1 word 1
slave 0

*.a_CFG_RDC_WORD[0].b_CFG_RDC1_WORD2 Configuration of actual value message frame 1 word 2
slave 0

*.a_CFG_RDC_WORD[0].b_CFG_RDC1_WORD3 Configuration of actual value message frame 1 word 3
slave 0

*.a_CFG_RDC_WORD[0].b_CFG_RDC2_WORD0 Configuration of actual value message frame 2 word 0
slave 0
Control Engineering �mega Drive-Line II 177
Baumüller Nürnber g GmbH 5.00005.02

CANsync
*.a_CFG_RDC_WORD[0].b_CFG_RDC2_WORD1 Configuration of actual value message frame 2 word 1
slave 0

*.a_CFG_RDC_WORD[0].b_CFG_RDC2_WORD2 Configuration of actual value message frame 2 word 2
slave 0

*.a_CFG_RDC_WORD[0].b_CFG_RDC2_WORD3 Configuration of actual value message frame 2 word 3
slave 0

*.a_CFG_RDC_WORD[0].b_CFG_RDC3_WORD0 Reserved

*.a_CFG_RDC_WORD[0].b_CFG_RDC3_WORD1 Reserved

*.a_CFG_RDC_WORD[0].b_CFG_RDC3_WORD2 Reserved

*.a_CFG_RDC_WORD[0].b_CFG_RDC3_WORD3 Reserved

*.a_CFG_RDC_WORD[0].b_CFG_RDC4_WORD0 Reserved

*.a_CFG_RDC_WORD[0].b_CFG_RDC4_WORD1 Reserved

*.a_CFG_RDC_WORD[0].b_CFG_RDC4_WORD2 Reserved

*.a_CFG_RDC_WORD[0].b_CFG_RDC4_WORD3 Reserved

*.a_CFG_RDC_WORD[1].b_CFG_RDC1_WORD0 Configuration of actual value message frame 1 word 0
slave 1

*.a_CFG_RDC_WORD[1].b_CFG_RDC1_WORD1 Configuration of actual value message frame 1 word 1
slave 1

*.a_CFG_RDC_WORD[1].b_CFG_RDC1_WORD2 Configuration of actual value message frame 1 word 2
slave 1

*.a_CFG_RDC_WORD[1].b_CFG_RDC1_WORD3 Configuration of actual value message frame 1 word 3
slave 1

*.a_CFG_RDC_WORD[1].b_CFG_RDC2_WORD0 Configuration of actual value message frame 2 word 0
slave 1

*.a_CFG_RDC_WORD[1].b_CFG_RDC2_WORD1 Configuration of actual value message frame 2 word 1
slave 1

*.a_CFG_RDC_WORD[1].b_CFG_RDC2_WORD2 Configuration of actual value message frame 2 word 2
slave 1

*.a_CFG_RDC_WORD[1].b_CFG_RDC2_WORD3 Configuration of actual value message frame 2 word 3
slave 1

... ...

*.a_CFG_RDC_WORD[31].b_CFG_RDC1_WORD0 Configuration of actual value message frame 1 word 0
slave 31

*.a_CFG_RDC_WORD[31].b_CFG_RDC1_WORD1 Configuration of actual value message frame 1 word 1
slave 31

*.a_CFG_RDC_WORD[31].b_CFG_RDC1_WORD2 Configuration of actual value message frame 1 word 2
slave 31

*.a_CFG_RDC_WORD[31].b_CFG_RDC1_WORD3 Configuration of actual value message frame 1 word 3
slave 31

*.a_CFG_RDC_WORD[31].b_CFG_RDC2_WORD0 Configuration of actual value message frame 2 word 0
slave 31

*.a_CFG_RDC_WORD[31].b_CFG_RDC2_WORD1 Configuration of actual value message frame 2 word 1
slave 31

*.a_CFG_RDC_WORD[31].b_CFG_RDC2_WORD2 Configuration of actual value message frame 2 word 2
slave 31

*.a_CFG_RDC_WORD[31].b_CFG_RDC2_WORD3 Configuration of actual value message frame 2 word 3
slave 31

*.a_CFG_RDC_WORD[31].b_CFG_RDC3_WORD0 Reserved

*.a_CFG_RDC_WORD[31].b_CFG_RDC3_WORD1 Reserved

*.a_CFG_RDC_WORD[31].b_CFG_RDC3_WORD2 Reserved

*.a_CFG_RDC_WORD[31].b_CFG_RDC3_WORD3 Reserved

*.a_CFG_RDC_WORD[31].b_CFG_RDC4_WORD0 Reserved

*.a_CFG_RDC_WORD[31].b_CFG_RDC4_WORD1 Reserved

Register Contents
178 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
(* Corresponds, for example, to _CANsync_CTRL_SL).

Your configuration tells the system which actual value it to be transferred at which position in the actual
value message frame (of the other CANsync slave).

Meaning

One word of the message frame is only not used if the following settings are
made: actual value number = 0, highword/lowword = 0 and assigned = 0.

*.a_CFG_RDC_WORD[31].b_CFG_RDC4_WORD2 Reserved

*.a_CFG_RDC_WORD[31].b_CFG_RDC4_WORD3 Reserved

Bit 0 Assigned
If = 1, the system uses this word of the message frame

Bit 1 Highword/lowword
If = 1, the system enters the highword of the actual value

Bit 2
Actual value number
Number of actual value 0 to 7

Bit 3

Bit 4

Bit 5

Bit 6 Reserved

Bit 7

NOTE

Register Contents
Control Engineering �mega Drive-Line II 179
Baumüller Nürnber g GmbH 5.00005.02

CANsync
Example:

(* Corresponds, for example, to _CANsync_CTRL_SL).

This means that the system reads word 0 from actual value message frame 1 of CANsync slave 0 and
writes it to the lowword of actual value 3.

*.a_CFG_RDC_WORD[0].b_CFG_RDC1_WORD0 = 16#0D 0 0 0 0 1 1 0 1

R AV No. H/L B

Register Contents

*.a_RD_BMARRAY[0][0] Actual value 0 of slave 0

*.a_RD_BMARRAY[0][1] Actual value 1 of slave 0

*.a_RD_BMARRAY[0][2] Actual value 2 of slave 0

*.a_RD_BMARRAY[0][3] Actual value 3 of slave 0

*.a_RD_BMARRAY[0][4] Actual value 4 of slave 0

*.a_RD_BMARRAY[0][5] Actual value 5 of slave 0

*.a_RD_BMARRAY[0][6] Actual value 6 of slave 0

*.a_RD_BMARRAY[0][7] Actual value 7 of slave 0

*.a_RD_BMARRAY[0][8] Reserved

... ...
180 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
(* Corresponds, for example, to _CANsync_CTRL_SL).

The actual values can be word or doubleword actual values.

When displaying _CANsync_CTRL_SL in the PROPROG wt II watch win-
dow, a period may be between the square brackets.

Explanation of the use of actual value channels

A CANsync slave can also evaluate all the actual value message frames of the other CANsync slaves.
However, it is only possible to request them from the CANsync master.

In synchronous operation, two actual value channels (channels 1 and 2; also RDC1 and RDC2) are
available. Actual value message frames 1 and 2 are sent on actual value channels 1 and 2.

*.a_RD_BMARRAY[0][15] Reserved

*.a_RD_BMARRAY[1][0] Actual value 0 of slave 1

*.a_RD_BMARRAY[1][1] Actual value 1 of slave 1

*.a_RD_BMARRAY[1][2] Actual value 2 of slave 1

*.a_RD_BMARRAY[1][3] Actual value 3 of slave 1

*.a_RD_BMARRAY[1][4] Actual value 4 of slave 1

*.a_RD_BMARRAY[1][5] Actual value 5 of slave 1

*.a_RD_BMARRAY[1][6] Actual value 6 of slave 1

*.a_RD_BMARRAY[1][7] Actual value 7 of slave 1

*.a_RD_BMARRAY[1][8] Reserved

... ...

*.a_RD_BMARRAY[31][0] Actual value 0 of slave 31

*.a_RD_BMARRAY[31][1] Actual value 1 of slave 31

*.a_RD_BMARRAY[31][2] Actual value 2 of slave 31

*.a_RD_BMARRAY[31][3] Actual value 3 of slave 31

*.a_RD_BMARRAY[31][4] Actual value 4 of slave 31

*.a_RD_BMARRAY[31][5] Actual value 5 of slave 31

*.a_RD_BMARRAY[31][6] Actual value 6 of slave 31

*.a_RD_BMARRAY[31][7] Actual value 7 of slave 31

*.a_RD_BMARRAY[31][8] Reserved

... ...

*.a_RD_BMARRAY[31][15] Reserved

NOTE

Register Contents
Control Engineering �mega Drive-Line II 181
Baumüller Nürnber g GmbH 5.00005.02

CANsync
Both actual value message frames consist of four words each (W0 to W3). After CANsync initialization,
you must state at least once the assignment of these words. This can be carried out in the initialization
program.

To do this, you must enter in area *.a_CFG_RDC_WORD[0].b_CFG_RDC1_WORD0 to
*.a_CFG_RDC_WORD[31].b_CFG_RDC2_WORD3 for each assigned word of the actual value messa-
ge frames (of each CANsync slave) the actual value of the other CANsync slaves that is transferred at
this position. Valid actual value numbers are in the range 0 to 7. For doubleword actual values, you must
use two words in the message frame.

You can change the configuration even during active operation. The system applies the change in the
next CANsync interval at the latest. The CANsync interface module reads the configuration data when
the corresponding actual value message frame is received.

The system carries out actual value message frame evaluation at the start of the CANsync event task.
There are two evaluation methods: With the first one, you poll the status registers of the actual value
channels (*.b_STATREG_RDC1 or *.b_STATREG_RDC2). The system enters in these registers the
slave number of the CANsync slave from which the corresponding actual value message frame was re-
ceived. You can then read out the actual values from registers (*.a_RD_BMARRAY[0][0] to
*.a_RD_BMARRAY[31][7]) of this CANsync slave and set the status register to 16#FF, for example, to
be able to detect correctly the next entry.

With the second method, you poll directly actual value acknowledgement
(*.a_STATREG_RDC[0].b_STATREG_RDC1 to *.a_STATREG_RDC[31].b_STATREG_RDC2) for one
CANsync slave (whose actual value message frames are to be monitored). In this acknowledgement re-
gister, the system marks with 16#02 reception of an actual value message frame. You can then read out
the actual values from registers (*.a_RD_BMARRAY[0][0] to *.a_RD_BMARRAY[31][7]) of this CANsync
slave. In this case too, the system must then write another value to the status register to detect reentry
of the acknowledgement.

You must assign in accordance with the actual value configuration in the application program the actual
values that must be read when an actual value message frame has been received.

The system uses the CANsync master's reference value message frame to request a CANsync slave to
send its actual value message frame. You can only make the setting on the CANsync master.

Command and Response Channel

Action command

Action commands are reported in the following registers.

(* Corresponds, for example, to _CANsync_CTRL_SL).

Register Contents

*.b_STATREG_AKT_CMD Status register of action command

*.b_AKT_CMD Action command

*.b_DATA_BYTE_AKT_CMD Data byte 0 (DB)

*.w_DATAWORD_AKT_CMD Data word 1 (DW)

*.b_STATREG_CONTROLWORD Status register of control word

*.w_CONTROLWORD Control word

*.b_STATREG_SYNC_MODUS Status register of SYNC mode

*.b_SYNC_MODUS SYNC mode
182 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
The action command that the CANsync master transmits as a broadcast command is only reported if the
CANsync slave is activated, i.e. if the corresponding bit is set in the bit strip (See “Register Structure and
Function of the Omega CANsync Master” on page 138.).

If the action command is a control word command (command byte = 16#01), the system enters the com-
mand's data word in *.w_CONTROLWORD as the control word and enters 16#02 in
*.b_STATREG_CONTROLWORD as the reception indicator.

With all the other action commands, the system enters the data in *.b_DATA_BYTE_AKT_CMD and
*.w_DATAWORD_AKT_CMD. In this case, the acknowledgement (reception indicator 16#02) is in
*.b_STATREG_AKT_CMD. Since a new action command can be transferred in every CANsync interval,
you should evaluate the action command's status register in every CANsync event task.

Parameter command

Parameter commands are reported in the following registers.

(* Corresponds, for example, to _CANsync_CTRL_SL).

Meanings of the control and status registers

Register Contents

*.b_STEUREG_PAR_CMD Control register of parameter command

*.b_STATREG_PAR_CMD Status register of parameter command

*.w_ERR_NR_PAR_CMD Error number of parameter command

*.d_DATA_PAR_CMD Data of parameter command

*.w_PAR_NR Parameter number

Bit 0 Active
Is set to 1 when the job has been received
Must be set to 0 when the job has been processed

Bit 1 Read
=1: Write parameter

Bit 2 Write
=1: Read parameter

Bit 3 Change
= 1: Indication that the CANsync master has changed the parameter command; must be
acknowledged by reset

Bit 4 Format
0: word parameter
1: doubleword parameter

Bit 5 Error display.
Must be set to 1 if the job generates an error

Bit 6 Busy
= 1: response has not yet been sent
= 0: response has been sent to the CANsync master

Bit 7 Reset
= 1 confirms that the command change was seen at the change bit and that the old
command will not be further-processed.
Control Engineering �mega Drive-Line II 183
Baumüller Nürnber g GmbH 5.00005.02

CANsync
Sequence of a parameter access

Parameter commands can be processed both in the CANsync event task and in the rest of the program.
To ensure data consistency, the system allocates jobs and evaluates the response via the control regi-
ster and the status register. To guarantee that the job is carried out without conflicts, first the control re-
gister and then the status register must always be read from the application program and if a new value
is written, the program must always first set the status register and then the control register. (The control
register is the crucial one for the CANsync interface module).

When a write parameter job has been received, the value to be written is located in
*.d_DATA_PAR_CMD and the parameter number is located in *.w_PAR_NR. In the control register
(*.b_STEUREG_PAR_CMD) and in the status register (*.b_STATREG_PAR_CMD), the system reports
a write word command with 16#45 and a write doubleword command with 16#55.

If the application program has written the requested parameter error-free, this must be indicated in the
status register and the control register by clearing bit 0 (active).

As soon as the response message frame has been sent to the CANsync master, the CANsync interface
module clears bit 6 (busy).

If the application program cannot carry out the write access, an error number must be entered in
*.w_ERR_NR_PAR_CMD and the system must set in the registers bit 5 (error display) and clear bit 0
(active). Then, a response message frame containing the entered error number is sent to the CANsync
master.

As soon as the response message frame has been sent to the CANsync master, the CANsync interface
module clears bit 6 (busy).

The read parameter job runs in a similar way with the only differences being that, regardless of the for-
mat, the command is 16#43 and that as the response the data must be entered in
*.d_DATA_PAR_CMD. Before acknowledging by deleting bit 0 (active), the system must enter the para-
meter's actual format in bit 4 (format) so that the response to the CANsync master can be generated
correctly.

If the CANsync master changes the parameter command (parameter number), the system indicates this
by setting bit 3 (change). In this case, the old command must not be responded to. The application pro-
gram must detect the change and acknowledge this by setting bit 7 (reset) . Then, the current parameter
command is entered.

Error code

Upload/download command

Upload and download commands are displayed in the following registers.

Value Meaning

16#0000 No error occurred

16#FFFF Error occurred

16#FFFE Value less than minimum value

16#FFFD Value greater than maximum value

16#FFFC Element cannot be changed

16#FFFB Element not present

16#FFFA Data is not available (e.g. being processed)

16#FFF9 Error in data format

Register Contents

*.b_STEUREG_UPDOWNBLK0 Reserved

*.b_STATREG_UPDOWNBLK0 Reserved
184 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
(* Corresponds, for example, to _CANsync_CTRL_SL).

Block 0 is reserved for the OmegaOS.

Meanings of the control and status registers

*.w_ERR_NR_UPDOWNBLK0 Reserved

*.w_SUBSL_NR_UPDOWNBLK0 Reserved

*.d_BASE_ADR_UPDOWNBLK0 Reserved

*.w_LENGTH_UPDOWNBLK0 Reserved

*.w_COUNTER_UPDOWNBLK0 Reserved

*.a_DATA_UPDOWNBLK0[0 to 74] Reserved

*.b_STEUREG_UPDOWNBLK1 Control register of upload/download block 1

*.b_STATREG_UPDOWNBLK1 Status register of upload/download block 1

*.b_EN_UPDOWNBLK1 Enable of block 1

*.w_ERR_NR_UPDOWNBLK1 Error number of upload/download block 1

*.d_BASE_ADR_UPDOWNBLK1 Base address of upload/download block 1

*.w_LENGTH_UPDOWNBLK1 Length in bytes of upload/download block 1

*.w_COUNTER_UPDOWNBLK1 Counter of upload/download block 1

*.a_DATA_UPDOWNBLK1[0 to 74] Data block of upload/download block 1

NOTE

Bit 0 Active
Is set to 1 when the job has been received
Must be set to 0 when the job has been processed

Bit 1 Change
= 1: Indication that the CANsync master has changed the parameter command; must be
acknowledged by reset

Bit 2 Mode
Bit3 bit2

0 0: reserved
0 1: initialization
1 0: ongoing upload/download
1 1: End of block

Bit 3

Bit 4 Upload/download
= 0: Upload
= 1: Download

Bit 5 Error display
Must be set to 1 if the job generates an error

Bit 6 Busy
= 1: Response has not yet been sent
= 0: Response has been sent to CANsync master

Bit 7 Reset
= 1 confirms that the command change was seen at the change bit and that the old
command will not be further-processed.

Register Contents
Control Engineering �mega Drive-Line II 185
Baumüller Nürnber g GmbH 5.00005.02

CANsync
Sequence of an upload/download job in block 1

Upload/dow nload jobs fo r the CAN sync slave are rece ived in block 1 o r in the single m essage fram e area .

The single message frame area is always used if the block length is greater than 300 bytes (75 double-
words). With a shorter block length, the system evaluates the enable on *.b_EN_UPDOWNBLK1. If the-
re is a value that is not equal to zero there, the job is logged on in block 1; otherwise, it is entered in the
single message frame area.

The evaluation of the upload/download commands can be used in the CANsync event task as well as in
the rest of the program. To ensure data consistency, the system allocates jobs and evaluates the re-
sponse via the control register and the status register. To guarantee that the job is carried out without
conflicts, first the control register and then the status register must always be read from the application
program and if a new value is written, the program must always first set the status register and then the
control register. (The control register is the crucial one for the CANsync interface module).

When a download is logged on, the system enters the base address in *.d_BASE_ADR_UPDOWNBLK1
and the block length in *.w_LENGTH_UPDOWNBLK1.

Base addresses 16#00000000 to 16#000000FF are reserved for operating system jobs.

The value 16#55 is reported in status register *.b_STATREG_UPDOWNBLK1 and in control register
*.b_STEUREG_UPDOWNBLK1. If the download is allowed, the application program must clear bit 0 (ac-
tive). Then, the CANsync master receives the entire block (you can read off the progress in the byte
counter in *.w_COUNTER_UPDOWNBLK1) and at the end the system reports 16#5D in the registers. If
the data is taken from area *.a_DATA_UPDOWNBLK1[0] to *.a_DATA_UPDOWNBLK1[74], you must
clear bit 0 (active). To indicate that the response message frame has been sent to the CANsync master,
the system clears bit 6 (busy).

If an error occurs in the CANsync slave while it is carrying out the job, the system must enter the error
number in *.w_ERR_NR_UPDOWNBLK1, set bit 5 (error display) and clear bit 0 (active). Then a corre-
sponding error message frame is sent to the CANsync master, which cancels the download.

Upload jobs run in a similar way with the only differences being that the command is 16#05 and that the
data must be entered in the block area before acknowledgement of the initialization message frame.

If the CANsync master changes the upload/download command, the system indicates this by setting bit
1 (change). Then, the old command must be cancelled. The application program must detect the change
and acknowledge this by setting bit 7 (reset) . Then, the current upload/download command is entered.

The error numbers that the slave CANsync can enter are above 16#00FF.

Upload/download error numbers that the CANsync slave interface module sends to the CANsync ma-
ster; display in the CANsync master only:

Error number Meaning

16#0001 CANsync slave acknowledges wrong block number

16#0002 Entered length greater than 300 bytes

16#0100 CANsync slave expects block with the number that is entered in the counter

16#0101 CANsync slave expects block end

16#0102 CANsync slave does not yet expect block end

16#0103 CANsync slave cancels upload/download

16#0104 Upload/download not possible

16#0105 Base address not allowed

16#0106 Reserved

16#0107 Block length > CANsync slave's maximum block length

16#0108 Message frame mode error (mode not allowed at this stage)
186 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync
Single message frame area

(* Corresponds, for example, to _CANsync_CTRL_SL).

Meanings of the control and status registers

The single message frame area is used in a similar way to block 1 with the only differences being that
each message frame must be acknowledged individually and that the corresponding mode must be en-
tered.

Register Contents

*.b_STEUREG_UPDOWN_SINGLE Control register of upload/download

*.b_STATREG_UPDOWN_SINGLE Status register of upload/download

*.w_ERR_NR_UPDOWN_SINGLE Error number of upload/download

*.d_BASE_ADR_UPDOWN_SINGLE Base address of upload/download

*.w_LENGTH_UPDOWN_SINGLE Length in bytes of upload/download

*.w_COUNTER_UPDOWN_SINGLE Counter of upload/download

*.d_DATA_DW_UPDOWN_SINGLE Data of upload/download

*.w_DATA_W_UPDOWN_SINGLE Data of upload/download

Bit 0 Active
Is set to 1 when the job has been received
Must be set to 0 when the job has been processed

Bit 1 Change
= 1: Indication that the CANsync master has changed the parameter command; must be
acknowledged by reset

Bit 2 Mode
Bit3 bit2

0 0: reserved
0 1: initialization
1 0: ongoing upload/download
1 1: End of block

Bit 3

Bit 4 Upload/download
= 0: Upload
= 1: Download

Bit 5 Error display
Must be set to 1 if the job generates an error

Bit 6 Busy
= 1: Response has not yet been sent
= 0: Response has been sent to CANsync master

Bit 7 Reset
= 1 confirms that the command change was seen at the change bit and that the old
command will not be further-processed.
Control Engineering �mega Drive-Line II 187
Baumüller Nürnber g GmbH 5.00005.02

CANsync
188 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
7.3 CANsync Function Blocks

7.3.1 Function Blocks for the Synchronized CAN Overview

In addition to the standard functions, you can use manufacturer-defined functions if you have logged on
libraries in a project.

Note: Logging on of libraries is described in the general help.

The following function blocks for synchronized CAN are available:

Function Brief description
CANsync_BC_MA0 Sends the CANsync master's broadcast command in transmis-

sion range 0 (highest priority)
CANsync_BC_MA1 Sends the CANsync master's broadcast command in transmis-

sion range 1 (medium priority)
CANsync_BC_MA2 Sends the CANsync master's broadcast command in transmis-

sion range 2 (low priority)
CANsync_BC_SL Receives the CANsync master's broadcast commands
CANsync_COMM_CONTROL_MA Configures use of a CANsync master interface module's com-

mand channel
CANsync_CONTROLWORD_MA Sends the CANsync-Master's control word commands
CANsync_CONTROLWORD_SL Receives the CANsync-Master's control word in a CANsync

slave interface module
CANsync_INIT Initializes a CANsync interface module
CANsync_MODE_MA Sets the operating mode of a CANsync master interface module
CANsync_MODE_SL Sets the operating mode of a CANsync slave interface module
CANsync_PAR_READ_MA The �mega-Master requests via CANsync a parameter value

from the �mega-Slave
CANsync_PAR_SL Detects the parameter request or the transferred parameter
CANsync_PAR_WRITE_MA The �mega-Master sends via CANsync a parameter value to

the �mega-Slave
CANsync_PD_CFG_MA Configures assignment of the CAN interface module's reference

value channels for a CANsync master
CANsync_PD_CFG_READ_MA Configures assignment of the CAN interface module's actual

value channels for a CANsync master
CANsync_PD_CFG_READ_SL Configures assignment of the CAN interface module's actual

value channels for a CANsync slave
CANsync_PD_CFG_SL Configures assignment of the CAN interface module's reference

value and actual value channels for a CANsync slave
CANsync_PD_COMM_MA Copies the process data (CANsync interface module's refe-

rence values and actual values) for a CANsync master
CANsync_PD_COMM_READ_MA Copies in a (master) CANsync interface module the process

data actual values of a CANsync slave
CANsync_PD_COMM_READ_SL Copies in a (slave) CANsync interface module the process data

actual values of a CANsync slave
CANsync_PD_COMM_SL Copies the process data (reference values and actual values)

for a CANsync slave
CANsync_SL_TYP_INIT CANsync slave types (initialization)
CANsync_UPDOWNLOAD_MA CANsync upload download Master
CANsync_UPDOWNLOAD_SL CANsync upload download slave
Control Engineering �mega Drive-Line II 189
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
7.3.2 CANsync_BC_MA0

Description

You can use this function block for CANsync to send a CANsync-Master broadcast command in trans-
mission range 0 (highest priority).

FB CANsync_BC_MA0 uses library BM_TYPES_20bd00 or above.

With the CANsync, there are three transmission ranges for broadcast message frames with broadcast
commands (transmission ranges 0 to 2). In any one CANsync interval, it is only possible to send one
broadcast message frame. Transmission range 0 has the highest priority. FB CANsync_BC_MA0 uses
transmission range 0 for sending the broadcast message frame.

Input/output _BASE:

At _BASE, you m ust connect a g lobal variable of da ta type C ANsync_M A_CTRL_BM STRUC T. You m ust
assign th is variable via declaration o f global variab les to the base address o f the CAN sync in terface modu le.

Example:

CANsync interface module 2 (node 2) on �mega Drive-Line II

_CANsync_CTRL_MA AT %MB3.200000 : CANsync_MA_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_MA is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_MA_CTRL_BMSTRUCT is the data type
%MB3.200000 is the base address of the CANsync 2 interface module

on the �mega Drive-Line II

NOTE

Parameter input Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
us_BC_CMD_NR USINT Command number of the broadcast

command
si_BC_BYTE SINT Data byte of the broadcast command
i_BC_WORD INT Data word of the broadcast com m and
d_SL_MASK DWORD Bit strip to which CANsync slaves the

broadcast command is to be sent
x_EN BOOL Enable

Parameter output Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
x_OK BOOL OK bit
190 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
Input us_BC_CMD_NR:

At input us_BC_CMD_NR, you state the command number of the broadcast command.

Inputs si_BC_BYTE, i_BC_WORD:

At inputs si_BC_BYTE and i_BC_WORD, you must connect the associated data in dependence on the
command number (see further below in the list of broadcast commands).

Input d_SL_MASK:

At input d_SL_MASK, you state which of the CANsync slaves is to receive the command. To do this, you
must set to TRUE for each CANsync slave the bit number that matches its slave number. For the CAN-
sync slave with slave number 0, you set bit 0 of d_SL_MASK to TRUE; or the CANsync slave with slave
number 1, you set bit 1 of d_SL_MASK to TRUE, etc. If you want to address all the CANsync slaves, you
must set d_SL_MASK = 16#FFFFFFFF.

Input x_EN:

If Input x_EN is set to TRUE, the system enters the broadcast command for sending. The CANsync in-
terface module then sends the broadcast command in the broadcast message frame to the selected
CANsync slaves (input d_SL_MASK). While x_EN is set to TRUE, the system enters the broadcast com-
mand for sending every time the FB is called. However, this would mean that the CANsync's command
channel would be busy all the time. You should therefore set input x_EN to TRUE for only one CANsync
interval to send the broadcast command once.

Output x_OK:

Output x_OK indicates by TRUE that the last broadcast message frame has been sent. Output x_OK is
FALSE if no broadcast message frame has been sent.

List of broadcast commands:

Command
number

Meaning

1 Control word
si_BC_BYTE: not used
i_BC_WORD: control word

2 to 127 Reserved
128 - 255 Are available for users
Control Engineering �mega Drive-Line II 191
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
7.3.3 CANsync_BC_MA1

Description

You can use this function block for CANsync to send a CANsync-Master broadcast command in trans-
mission range 1 (medium priority).

FB CANsync_BC_MA1 uses library BM_TYPES_20bd00 or above.

With the CANsync, there are three transmission ranges for broadcast message frames with broadcast
commands (transmission ranges 0 to 2). In any one CANsync interval, it is only possible to send one
broadcast message frame. Transmission range 1 has the medium priority. FB CANsync_BC_MA1 uses
transmission range 1 for sending the broadcast message frame.

Input/output _BASE:

At _BASE, you m ust connect a g lobal variable of da ta type C ANsync_M A_CTRL_BM STRUC T. You m ust
assign th is variable via declaration o f global variab les to the base address o f the CAN sync in terface modu le.

Example:

CANsync interface module 2 (node 2) on �mega Drive-Line II

_CANsync_CTRL_MA AT %MB3.200000 : CANsync_MA_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_MA is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_MA_CTRL_BMSTRUCT is the data type
%MB3.200000 is the base address of the CANsync 2 interface module

on the �mega Drive-Line II

NOTE

Parameter input Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
us_BC_CMD_NR USINT Command number of the broadcast

command
si_BC_BYTE SINT Data byte of the broadcast command
i_BC_WORD INT Data word of the broadcast com m and
d_SL_MASK DWORD Bit strip to which CANsync slaves the

broadcast command is to be sent
x_EN BOOL Enable

Parameter output Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
x_OK BOOL OK bit
192 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
Input us_BC_CMD_NR:

At input us_BC_CMD_NR, you state the command number of the broadcast command.

Inputs si_BC_BYTE, i_BC_WORD:

At inputs si_BC_BYTE and i_BC_WORD, you must connect the associated data in dependence on the
command number (see further below in the list of broadcast commands).

Input d_SL_MASK:

At input d_SL_MASK, you state which of the CANsync slaves is to receive the command. To do this, you
must set to TRUE for each CANsync slave the bit number that matches its slave number. For the CAN-
sync slave with slave number 0, you set bit 0 of d_SL_MASK to TRUE; or the CANsync slave with slave
number 1, you set bit 1 of d_SL_MASK to TRUE, etc. If you want to address all the CANsync slaves, you
must set d_SL_MASK = 16#FFFFFFFF.

Input x_EN:

If Input x_EN is set to TRUE, the system enters the broadcast command for sending. The CANsync in-
terface module then sends the broadcast command in the broadcast message frame to the selected
CANsync slaves (input d_SL_MASK). While x_EN is set to TRUE, the system enters the broadcast com-
mand for sending every time the FB is called. However, this would mean that the CANsync's command
channel would be busy all the time. You should therefore set input x_EN to TRUE for only one CANsync
interval to send the broadcast command once.

Output x_OK:

Output x_OK indicates by TRUE that the last broadcast message frame has been sent. Output x_OK is
FALSE if no broadcast message frame has been sent.

List of broadcast commands:

Command
number

Meaning

1 Control word
si_BC_BYTE: not used
i_BC_WORD: control word

2 - 127 Reserved
128 - 255 Are available for users
Control Engineering �mega Drive-Line II 193
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
7.3.4 CANsync_BC_MA2

Description

You can use this function block for CANsync to send a CANsync-Master broadcast command in trans-
mission range 2 (lowest priority).

FB CANsync_BC_MA2 uses library BM_TYPES_20bd00 or above.

With the CANsync, there are three transmission ranges for broadcast message frames with broadcast
commands (transmission ranges 0 to 2). In any one CANsync interval, it is only possible to send one
broadcast message frame. Transmission range 2 has the lowest priority. FB CANsync_BC_MA2 uses
transmission range 2 for sending the broadcast message frame.

Input/output _BASE:

At _BASE, you m ust connect a g lobal variable of da ta type C ANsync_M A_CTRL_BM STRUC T. You m ust
assign th is variable via declaration o f global variab les to the base address o f the CAN sync in terface modu le.

Example:

CANsync interface module 2 (node 2) on �mega Drive-Line II

_CANsync_CTRL_MA AT %MB3.200000 : CANsync_MA_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_MA is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_MA_CTRL_BMSTRUCT is the data type
%MB3.200000 is the base address of the CANsync 2 interface module

on the �mega Drive-Line II

NOTE

Parameter input Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
us_BC_CMD_NR USINT Command number of the broadcast

command
si_BC_BYTE SINT Data byte of the broadcast command
i_BC_WORD INT Data word of the broadcast com m and
d_SL_MASK DWORD Bit strip to which CANsync slaves the

broadcast command is to be sent
x_EN BOOL Enable

Parameter output Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
x_OK BOOL OK bit
194 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
Input us_BC_CMD_NR:

At input us_BC_CMD_NR, you state the command number of the broadcast command.

Inputs si_BC_BYTE, i_BC_WORD:

At inputs si_BC_BYTE and i_BC_WORD, you must connect the associated data in dependence on the
command number (see further below in the list of broadcast commands).

Input d_SL_MASK:

At input d_SL_MASK, you state which of the CANsync slaves is to receive the command. To do this, you
must set to TRUE for each CANsync slave the bit number that matches its slave number. For the CAN-
sync slave with slave number 0, you set bit 0 of d_SL_MASK to TRUE; or the CANsync slave with slave
number 1, you set bit 1 of d_SL_MASK to TRUE, etc. If you want to address all the CANsync slaves, you
must set d_SL_MASK = 16#FFFFFFFF.

Input x_EN:

If Input x_EN is set to TRUE, the system enters the broadcast command for sending. The CANsync in-
terface module then sends the broadcast command in the broadcast message frame to the selected
CANsync slaves (input d_SL_MASK). While x_EN is set to TRUE, the system enters the broadcast com-
mand for sending every time the FB is called. However, this would mean that the CANsync's command
channel would be busy all the time. You should therefore set input x_EN to TRUE for only one CANsync
interval to send the broadcast command once.

Output x_OK:

Output x_OK indicates by TRUE that the last broadcast message frame has been sent. Output x_OK is
FALSE if no broadcast message frame has been sent.

List of broadcast commands:

Command
number

Meaning

1 Control word
si_BC_BYTE: not used
i_BC_WORD: control word

2 to 127 Reserved
128 - 255 Are available for users
Control Engineering �mega Drive-Line II 195
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
7.3.5 CANsync_BC_SL

Description

You can use this function block for CANsync to receive a CANsync-Master broadcast command with a
CANsync-Slave.

FB CANsync_BC_SL uses library BM_TYPES_20bd00 or above.

This FB indicates at si_BC_RECEIVED that a broadcast command of the CANsync-Master was received
and outputs the command number (us_BC_CMD_NR) as well as the contents of the broadcast com-
mand (si_BC_BYTE, i_BC_WORD).

Input/output _BASE:

At _BASE, you must connect a global variable of data type CANsync_SL_CTRL_BMSTRUCT. You must
assign this variable via declaration of global variables to the base address of the CANsync interface mo-
dule.

Example:

CANsync interface module 1 (node 1) on �mega Drive-Line II

_CANsync_CTRL_SL AT %MB3.100000 : CANsync_SL_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_ SL is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_SL_CTRL_BMSTRUCT is the data type
%MB3.100000 is the base address of the CANsync 1 interface module

on the �mega Drive-Line II

NOTE

Parameter input Data type Description
_BASE CANsync_SL_CTRL_BMSTRUCT Operating data for the CANsync

interface module

Parameter output Data type Description
_BASE CANsync_SL_CTRL_BMSTRUCT Operating data for the CANsync

interface module
us_BC_CMD_NR USINT Command number of the broadcast

command
si_BC_BYTE SINT Data byte of the broadcast command
i_BC_WORD INT Data word of the broadcast com m and
si_BC_RECEIVED SINT

0, 2
Display indicating that a command
was received
196 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
Output us_BC_CMD_NR:

At output us_BC_CMD_NR, the system outputs the command number of the broadcast command.

Outputs si_BC_BYTE, i_BC_WORD:

At outputs si_BC_BYTE and i_BC_WORD, the data must be read that is associated with the respective
command number.

Output si_BC_RECEIVED:

At output si_BC_RECEIVED, the system indicates whether a broadcast message frame was received
(with a broadcast command). In this case, si_BC_RECEIVED displays a 2. Otherwise,
si_BC_RECEIVED displays a 0. The system does not read out the data associated with the broadcast
message frame (us_BC_CMD_NR, si_BC_BYTE, i_BC_WORD) until the message frame has been re-
ceived. Otherwise, the old values continue to be displayed.

List of broadcast commands:

Command
number

Meaning

1 Control word
si_BC_BYTE: not used
i_BC_WORD: control word

2 to 127 Reserved
128 - 255 Are available for users
Control Engineering �mega Drive-Line II 197
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
7.3.6 CANsync_COMM_CONTROL_MA

Description

You can use this function block for CANsync to configure the use of a CANsync interface module's com-
mand channel.

FB CANsync_COMM_CONTROL_MA uses library BM_TYPES_20bd00 or
above.

Using this FB, you state the slave number of the CANsync slave for which the system is to request whe-
ther send control word jobs (si_SL_NR_CTRL, x_EN_CTRL), parameter jobs (si_SL_NR_PAR,
x_EN_PAR) and upload/download jobs (si_SL_NR_UDL, x_EN_UDL) are present.

The CANsync master can send a command message frame in every CAN-
sync interval.

NOTE

Parameter input Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
si_SL_NR_CTRL SINT

-128, 0 to 31
Slave number of the CANsync slave
with send control word job

x_EN_CTRL BOOL Enable for si_SL_NR_CTRL
si_SL_NR_PAR SINT

-128, 0 to 31
Slave number of the CANsync slave
with parameter job

x_EN_PAR BOOL Enable for si_SL_NR_PAR
si_SL_NR_UDL SINT

-128, 0 to 31
Slave number of the CANsync slave
with upload/download job

x_EN_UDL BOOL Enable for si_SL_NR_UDL

si_MAX_SL_NR a) SINT
-1, 0 to 31

Maximum slave number of automatic

incrementinga)

a) This input corresponds to input si_MAX_SL_NR on FB CANsync_PD_COMM_MA as the maximum
slave number for an automatic actual value message frame request.

Parameter output Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module

NOTE
198 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
The system processes the various message frames on the command channel in a priority-based se-
quence:

As a result of these priorities, you cannot send another message frame if a higher-priority one is being
transmitted. If you send the control word message frame in every CANsync interval, for example, you
can never transmit a parameter message frame or an upload/download message frame!

If you need to poll several CANsync slaves for existing jobs, you set the CANsync interface module as
follows:

In every CANsync interval the system automatically increments by 1 the slave number of the CANsync
slaves for which polling for existing orders is being carried out. This incrementation is carried out up to
si_MAX_SL_NR. After this, the system starts with polling for the CANsync slave with slave number 0,
etc.

Input/output _BASE:

At _BASE, you must connect a global variable of data type CANsync_MA_CTRL_BMSTRUCT. You
must assign this variable via declaration of global variables to the base address of the CANsync interface
module.

Example:

CANsync interface module 2 (node 2) on �mega Drive-Line II

_CANsync_CTRL_MA AT %MB3.200000 : CANsync_MA_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_MA is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_MA_CTRL_BMSTRUCT is the data type
%MB3.200000 is the base address of the CANsync 2 interface module

on the �mega Drive-Line II

Inputs si_SL_NR_CTRL, x_EN_CTRL:

At input si_SL_NR_CTRL, you state the slave number of the CANsync slave for which the system is to
carry out polling for an existing send control word job (FB CANsync_CONTROLWORD_MA).

Entering si_SL_NR_CTRL = -128 tells the system in every CANsync interval to automatically increment
by 1 the slave number of the CANsync slave for which the system is to carry out polling for an existing
send control word job until si_MAX_SL_NR is reached. After this, the system starts with polling for the
CANsync slave with slave number 0, etc.

The default setting is si_SL_NR_CTRL = -128, i.e. automatic incrementing until si_MAX_SL_NR.

The system on ly app lies the setting a t si_SL_NR_C TRL (even if it is no t ass igned) if x_EN_CTRL = TRUE.
If x_EN_CTRL = FALSE, the system does not change this part o f the com mand channel con figuration .

Message frame type Priority

Broadcast message frame 0 Highest

Broadcast message frame 1 ↑ ↑ ↑ ↑
Broadcast message frame 2 | | | |

Control word message frames | | | |
Parameter message frames ↓ ↓ ↓ ↓

Upload/download message frames Lowest
Control Engineering �mega Drive-Line II 199
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
Inputs si_SL_NR_PAR, x_EN_PAR:

At input si_SL_NR_PAR , you state the slave number of the CANsync slave for which the system is to
carry out polling for an existing parameter job (FB CANsync_PAR_WRITE_MA or
CANsync_PAR_READ_MA).

Entering si_SL_NR_CTRL = -128 tells the system in every CANsync interval to automatically increment
by 1 the slave number of the CANsync slave for which the system is to carry out polling for an existing
send parameter job until si_MAX_SL_NR is reached. After this, the system starts with polling for the
CANsync slave with slave number 0, etc.

The default setting is si_SL_NR_PAR = -128, i.e. automatic incrementing until si_MAX_SL_NR.

The system only applies the setting at si_SL_NR_PAR (even if it is not assigned) if x_EN_PAR = TRUE.
If x_EN_PAR = FALSE, the system does not change this part of the command channel configuration.

Inputs si_SL_NR_UDL, x_EN_UDL:

At input si_SL_NR_UDL, you state the slave number of the CANsync slave for which the system is to
carry out polling for an existing upload/download job (FB CANsync_UPDOWNLOAD_MA).

Entering si_SL_NR_CTRL = -128 tells the system in every CANsync interval to automatically increment
by 1 the slave number of the CANsync slave for which the system is to carry out polling for an existing
upload/download job until si_MAX_SL_NR is reached. After this, the system starts with polling for the
CANsync slave with slave number 0, etc.

The default setting is si_SL_NR_UDL = -128, i.e. automatic incrementing until si_MAX_SL_NR.

The system only applies the setting at si_SL_NR_UDL (even if it is not assigned) if x_EN_PAR = TRUE.
If x_EN_UDL = FALSE, the system does not change this part of the command channel configuration.

Input si_MAX_SL_NR:

You state the highest slave number of a CANsync slave at input si_MAX_SL_NR. The system keeps
polling up to this slave number whether send control word jobs, parameter jobs and upload/download
jobs are available. For this, the system sets si_SL_NR_CTRL, si_SL_NR_PAR, si_SL_UDL not assi-
gned and si_EN_CTRL, si_EN_PAR and si_EN_UDL to TRUE.

If si_MAX_SL_NR = -1, the value remains unchanged on the CANsync interface module. The default
setting is si_MAX_SL_NR = -1, i.e. the value remains unchanged on the CANsync interface module.

This input corresponds to input si_MAX_SL_NR on FB
CANsync_PD_COMM_MA. This means that you use input si_MAX_SL_NR
on FB CANsync_COMM_CONTROL_MA or input si_MAX_SL_NR on FB
CANsync_PD_COMM_MA to state the highest slave number of a CANsync
slave. You must use only one of the two inputs!

NOTE
200 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
7.3.7 CANsync_CONTROLWORD_MA

Description

You can use this function block for CANsync to send a control word command of the CANsync-Master.

FB CANsync_CONTROLWORD_MA uses library BM_TYPES_20bd00 or
above.

The system transfers to the CANsync interface module the control word (w_CONTROLWORD), the en-
able for sending (x_EN) and the slave number of the CANsync slave to which the control word is to be
sent (si_SL_NR_CTRL). After the CANsync interface module has detected the job (see FB
CANsync_COMM_CONTROL_MA), the system sends the control word at the CANsync slave using a
control word message frame and acknowledges sending at output x_OK .

Input/output _BASE:

At _BASE, you m ust connect a g lobal variable of da ta type CAN sync_M A_CTRL_BMSTRUC T. You must
assign th is variable v ia declaration of g lobal variab les to the base address of the CANsync in terface modu le.

Example:

CANsync interface module 2 (node 2) on �mega Drive-Line II

_CANsync_CTRL_MA AT %MB3.200000 : CANsync_MA_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_MA is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_MA_CTRL_BMSTRUCT is the data type
%MB3.200000 is the base address of the CANsync 2 interface module

on the �mega Drive-Line II

NOTE

Parameter input Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
si_SL_NR_CTRL SINT

0 to 31
Slave number of the CANsync slaves
to which the control word is to be sent

w_CONTROLWORD WORD Control word
x_EN BOOL Enable

Parameter output Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
x_OK BOOL OK bit
Control Engineering �mega Drive-Line II 201
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
Input w_CONTROLWORD:

You connect the control word that is to be sent at input w_CONTROLWORD.

Input x_EN:

If Input x_EN is set to TRUE, the system enters the control word for sending. The CANsync interface
module then sends the control word in the control word message frame to CANsync slave
si_SL_NR_CTRL. While x_EN stays TRUE, the system enters the control word for sending every time
the FB is called. The system carries this out again every time the FB is called while x_EN stays TRUE.
However, this would mean that the CANsync's command channel would be busy all the time. You should
therefore set input x_EN to TRUE for only one CANsync interval to send the control word once.

Output x_OK:

Output x_OK indicates by TRUE that the last control word message frame has been sent. Output x_OK
is FALSE if no control word message frame has been sent.
202 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
7.3.8 CANsync_CONTROLWORD_SL

Description

You can use this function block for CANsync to receive a CANsync-Master control word of the CANsync-
Master in a CANsync slave interface module.

FB CANsync_CONTROLWORD_SL uses library BM_TYPES_20bd00 or
above.

If the CANsync slave receives a control word message frame from the CANsync master, FB
CANsync_CONTROLWORD_SL outputs the received control word at output w_CONTROLWORD.

Input/output _BASE:

At _BASE, you must connect a global variable of data type CANsync_SL_CTRL_BMSTRUCT. You must
assign this variable via declaration of global variables to the base address of the CANsync interface mo-
dule.

Example:

CANsync interface module 1 (node 1) on �mega Drive-Line II

_CANsync_CTRL_SL AT %MB3.100000 : CANsync_SL_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_ SL is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_SL_CTRL_BMSTRUCT is the data type
%MB3.100000 is the base address of the CANsync 1 interface module

on the �mega Drive-Line II

Output w_CONTROLWORD:

The system outputs the received control word at output w_CONTROLWORD.

NOTE

Parameter input Data type Description
_BASE CANsync_SL_CTRL_BMSTRUCT Operating data for the CANsync

interface module

Parameter output Data type Description
_BASE CANsync_SL_CTRL_BMSTRUCT Operating data for the CANsync

interface module
w_CONTROLWORD WORD Control word
si_RECEIVED SINT Display indicating that a control word

was received
Control Engineering �mega Drive-Line II 203
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
Output si_RECEIVED:

The system displays at output si_RECEIVED whether a control word message frame has been received.
In this case, the output displays a 2. Otherwise the system displays a 0 at output si_RECEIVED.

The control word message frame is a special case of the broadcast message frame (with broadcast com-
mand number 1).
204 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
7.3.9 CANsync_INIT

Description

You can use this function block for CANsync to initialize a CANsync interface module (master or slave).

FB CANsync_INIT uses library BM_TYPES_20bd00 or above.

FB CANsync_INIT offers several configuration options for initializing a CANsync interface module. You
use the FB when initializing a CANsync master interface module or a CANsync slave interface module.
If you are initializing both CANsync master as well as CANsync slave interface modules (→ a CANsync
cluster), the FB is used twice with a different input assignment (see further below).

NOTE

Parameter input Data type Description
_BASE CANsync_INIT_BMSTRUCT Initialization data for the CANsync

interface module
x_SL BOOL Selection of CANsync slave/CANsync

master
x_SYNC_IN BOOL Configuration of send/receive SYNC

signal
x_SYNC_MODE BOOL Set up synchronous operating mode
x_ASYNC_MODE0 BOOL Reserved
x_ASYNC_MODE1 BOOL Reserved
a_SL_TYP BYTE_32_BMARRAY Initialization data of slave types
b_ACCEPT_CODE BYTE Acceptance code
b_ACCEPT_MASK BYTE Acceptance Mask
b_BIT_TIMING0 BYTE Bus timing 0
b_BIT_TIMING1 BYTE Bus timing 1
us_BAUDRATE USINT

3, 4, 5
Baud rate

us_SYNC_INTERVAL USINT
8, 4, 2

CANsync interval (cycle scheme) in ms

Parameter output Data type Description
_BASE CANsync_INIT_BMSTRUCT Initialization data for the CANsync

interface module
w_ERR WORD Error word
x_ERR BOOL Error bit
x_OK BOOL OK bit
Control Engineering �mega Drive-Line II 205
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
Input/output _BASE:

At _BASE, you must connect a global variable of data type CANsync_INIT_BMSTRUCT. You must as-
sign this variable via declaration of global variables to the base address of the CANsync interface mo-
dule.

Example:

CANsync interface module 1 (node 1) on �mega Drive-Line II

_CANsync_INIT_SL AT %MB3.100000 : CANsync_INIT_BMSTRUCT;

Where:

CANsync_INIT_ SL is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_INIT_BMSTRUCT is the data type
%MB3.100000 is the base address of the CANsync 1 interface module

on the �mega Drive-Line II

CANsync interface module 2 (node 2) on �mega Drive-Line II

_CANsync_INIT_MA AT %MB3.200000 : CANsync_INIT_BMSTRUCT;

Where:

CANsync_INIT_ MA is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_INIT_BMSTRUCT is the data type
%MB3.200000 is the base address of the CANsync 2 interface module

on the �mega Drive-Line II

Input x_SL:

At input x_SL, you choose whether the system is to initialize the CANsync interface module as a master
or a slave.

If x_SL = FALSE, the system initializes the CANsync interface module as a master; if x_SL = TRUE, the
system initializes the CANsync interface module as a slave.

Input x_SYNC_IN:

If both CANsync interface modules on the �mega Drive-Line II are to be initialized as a CANsync cluster
(i.e. a CANsync slave and a CANsync master), you must make the setting that the received SYNC signal
of the CANsync slave interface module is to be used as the SYNC signal of the CANsync master inter-
face module.

If you are only operating the CANsync master interface module (not a CANsync cluster), the CANsync
master interface module must generate its own SYNC signal and x_SYNC_IN stays FALSE.

When x_SYNC_IN = FALSE, the CANsync master interface module generates its own SYNC signal;
when x_SYNC_IN = TRUE, the CANsync master interface module takes the SYNC signal of the CAN-
sync slave interface module.

Inputs x_SYNC_MODE, x_ASYNC_MODE0, x_ASYNC_MODE1:

You set the CANsync interface module's operating mode at these three inputs. Only one of the three
inputs may be TRUE.

Setting x_SYNC_MODE = TRUE sets synchronous operation.

Inputs x_ASYNC_MODE0 and x_ASYNC_MODE1 are reserved and are not assigned.

Explanation of the operating mode. See “General” on page 115.
206 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
If all three inputs are FALSE, the system only transfers the initialization data to the CANsync interface
module and does not set an operating mode. You can set the operating mode using FB
CANsync_MODE_MA (CANsync master interface module) or CANsync_MODE_SL (CANsync slave in-
terface module).

The operating mode is enabled using FB CANsync_MODE_MA or
CANsync_MODE_SL .

Input a_SL_TYP:

This input is only assigned if the CANsync interface module is initialized as a master. Here, you state
which CANsync slaves are connected to the CANsync bus. You can also do this using FB
CANsync_SL_TYP_INIT.

A variable of data type BYTE_32_BMARRAY is connected at input a_SL_TYP. Data type
BYTE_32_BMARRAY is a field of 32 entries of data type byte:

BYTE_32_BMARRAY : ARRAY [0..31] OF BYTE;

Example:

a_Slave_Typen : BYTE_32_BMARRAY;

Where:

a_Slave_Typen is the variable name with the data type short designati-
on "a" for ARRAY

BYTE_32_BMARRAY is the data type.

Data type BYTE_32_BMARRAY is a field of 32 entries of data type byte:

BYTE_32_BMARRAY : ARRAY [0..31] OF BYTE;

In the individual entries of the field, you enter the slave type of the CANsync slave on the CANsync bus.
In entry [0], there is the slave type of the CANsync slave with slave number 0; in entry [1] there is the
slave type of the CANsync slave with slave number 1, etc.

A 0 in entry [x] means that there is no CANsync slave with slave number x on the CANsync bus.

A value ≠ 0 in entry [x] means that there is one CANsync slave with slave number x on the CANsync bus.

Meanings of the slave types

NOTE

Slave type Meaning

0 No CANsync slave

1 CANsync slave interface module of an �mega Drive-Line II, V-controller with
CANsync interface

2 - 255 Reserved
Control Engineering �mega Drive-Line II 207
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
Inputs b_ACCEPT_MASK, b_ACCEPT_CODE:

At inputs b_ACCEPT_MASK and b_ACCEPT_CODE, you can set the acceptance filter of the CANsync
interface module. If the inputs are not assigned, this yields default settings b_ACCEPT_MASK = 16#FF
and b_ACCEPT_CODE = 16#FF, i.e. all the objects are taken into account.

No other settings are needed with the CANsync.

These inputs are present for reasons of compatibility.

Inputs b_BIT_TIMING0, b_BIT_TIMING1, us_BAUDRATE, us_SYNC_INTERVAL:

At input us_BAUDRATE, you set the baud rate for the CANsync bus. You must set the maximum baud
rate that all the nodes on the CANsync bus can "understand".

For limitations on the baud rate, refer to the respective technical description.

The bus timing is calculated for three different baud rates and it is transferred to the CANsync interface
module by FB CANsync_INIT.

If value us_BAUDRATE is less than 3 or greater than 5, the system sets the baud rate to 125 kbps and
sets bit 1 in error word w_ERR to TRUE.

At inputs b_BIT_TIMING0 and b_BIT_TIMING1, you can set individually the bus timing of the CANsync
interface module. For the values for this, refer to the respective technical description.

The system applies the settings of these inputs when input us_BAUDRATE = 0.

The system ignores the settings of these inputs when input us_BAUDRATE is assigned with a value from
3 to 6.

The default setting is us_BAUDRATE = 0, i.e. if us_BAUDRATE is not assigned, the system applies the
settings of b_BIT_TIMING0 and b_BIT_TIMING1.

The system only applies the values at inputs b_BIT_TIMING0 and
b_BIT_TIMING1 if input us_BAUDRATE = 0 or it is not assigned.

NOTE

Baud rate us_BAUDRATE b_BIT_TIMING0 b_BIT_TIMING1

125 kbps 3 16#03 16#1C

250 kbps 4 16#01 16#1C

500 kbps 5 16#00 16#1C

NOTE
208 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
At input us_SYNC_INTERVAL, you state the duration in milliseconds of the CANsync interval and the
CANsync cycle time.

Together with input us_BAUDRATE, the following combinations are allowed:

Output x_OK:

The system sets output x_OK to TRUE if the CANsync interface module was initialized successfully. Out-
put x_OK stays FALSE if the CANsync interface module was not initialized or an error occurred at initia-
lization.

Outputs x_ERR, w_ERR:

If an error occurs, the system sets error bit x_ERR to TRUE and outputs error word b_ERR. In this case
output x_OK stays FALSE.

Error word w_ERR:

CANsync baud rate and CANsync
interval duration

us_BAUDRATE us_SYNC_INTERVAL

 500 kbps and 2 ms 5 2

 250 kbps and 4 ms 4 4

 125 kbps and 8 ms 3 8

Bit No. Error

0 Timeout handshaking with the CANsync interface module

1 Input error with b_BIT_TIMING0, b_BIT_TIMING1 or us_BAUDRATE

2 - 10 Reserved

11 Initialization of CANsync interface module not completed

12 - 15 Reserved
Control Engineering �mega Drive-Line II 209
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
7.3.10CANsync_MODE_MA

Description

You can use this function block for CANsync to set the operating mode of a CANsync interface module.

FB CANsync_MODE_MA uses library BM_TYPES_20bd00 or above.

FB CANsync_MODE_MA makes it possible to set the operating modes on the CANsync interface mo-
dule. The inputs correspond to commands. The outputs display the current actual status. The signals
are each active when they are TRUE. If all the inputs are FALSE, the system does not execute any com-
mands and the last status stays active.

NOTE

Parameter input Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the

CANsync interface
module

x_RESET_SOFTWARE BOOL Software reset
x_SET_INIT_DATA BOOL Take over initialization

data
x_CANsync_RUN BOOL Enable active operation
x_RESET_CANsync_CONTROLLER BOOL Reset CANsync controller

(bus-off reset)
x_SYNC_MODE BOOL Set up synchronous ope-

rating mode
x_ASYNC_MODE0 BOOL Reserved
x_ASYNC_MODE1 BOOL Reserved

Parameter output Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the

CANsync interface
module

x_HS_ACTIV BOOL Handshake is active
x_INIT_POSSIBLE BOOL Initialization possible
x_WAIT BOOL Waiting for command for

setting the operating
mode

x_PREPARE_ACTIV BOOL Setting the operating
mode is active

x_CANsync_ACTIV BOOL Operation active
x_SYNC_MODE_ACTIV BOOL Synchronous operation
x_ASYNC_MODE_ACTIV BOOL Asynchronous operation
x_SL BOOL Slave operation
x_MA BOOL Master operation
210 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
FB CANsync_MODE_MA does not wait for the CANsync interface module's
status message. This means that if the FB is called in the cold and warm
boot task, the outputs may not be set.
If you need a display of the status, the FB must be called again. The inputs
must then be set to FALSE. The CANsync interface module's status is then
displayed at the outputs.

Use in the cold and warm boot task:

It is possible to start an operating mode. To do this, you set an operating mode (e.g. set x_SYNC_MODE
to TRUE for synchronous operation).

The set operating mode is started with x_CANsync_RUN = TRUE.

Use in the cyclical program:

The CANsync interface module can be reinitialized. To do this, you reset the CANsync interface module
with x_RESET_SOFTWARE = TRUE (FB CANsync_MODE_MA).

After this, the system carries out reinitialization of the CANsync interface module (FB CANsync_INIT)
and sets and enables an operating mode (FB CANsync_MODE_MA).

Input/output _BASE:

At _BASE, you must connect a global variable of data type CANsync_MA_CTRL_BMSTRUCT. You
must assign this variable via declaration of global variables to the base address of the CANsync interface
module.

Example:

CANsync interface module 2 (node 2) on �mega Drive-Line II

_CANsync_CTRL_MA AT %MB3.200000 : CANsync_MA_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_MA is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_MA_CTRL_BMSTRUCT is the data type
%MB3.200000 is the base address of the CANsync 2 interface module

on the �mega Drive-Line II

Input x_RESET_CANsync_CONTROLLER:

With x_RESET_CANsync_CONTROLLER = TRUE, you reset the CANsync controller. This causes the
CANsync controller to leave BUS-OFF status and it can be active again on the CANsync bus.

Input x_SET_INIT_DATA:

With x_SET_INIT_DATA = TRUE, the CANsync interface module applies new initialization data.

This input is only needed if you explicitly program initialization without FB CANsync_INIT.

NOTE
Control Engineering �mega Drive-Line II 211
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
Input x_CANsync_RUN:

With x_CANsync_RUN = TRUE, you activate the operating mode set under x_SYNC_MODE,
x_ASYNC_MODE0 or x_ASYNC_MODE1.

Inputs x_SYNC_MODE, x_ASYNC_MODE0, x_ASYNC_MODE1:

You set the CANsync interface module's operating mode at these three inputs. Only one of the three
inputs may be TRUE.

Setting x_SYNC_MODE = TRUE sets synchronous operation.

Inputs x_ASYNC_MODE0 and x_ASYNC_MODE1 are reserved and stay FALSE.

After setting the operating mode, you use x_CANsync_RUN = TRUE to enable active operation.

The system issues a TRUE checkback signal at the outputs. Otherwise, the outputs are FALSE.

Output x_HS_ACTIV:
Output x_HS_ACTIV indicates with TRUE that handshaking is active. This is used by FB CANsync_INIT.

Output x_INIT_POSSIBLE:
Output x_INIT_POSSIBLE indicates with TRUE that the CANsync interface module is in the initialization
status. The module can then receive new initialization data or the command for setting the operating mo-
de.

Output x_WAIT:
Output x_WAIT indicates with TRUE that the CANsync interface module has applied the initialization
data and is waiting for the command for setting the operating mode.

Output x_PREPARE_ACTIV:
Output x_PREPARE_ACTIV indicates with TRUE that an operating mode is being set up.

Output x_CANsync_ACTIV:
Output x_CANsync_ACTIV indicates with TRUE that an operating mode is active.

Output x_SYNC_MODE_ACTIV:
Output x_SYNC_MODE_ACTIV indicates with TRUE that synchronous operation has been set up.

Output x_ASYNC_MODE_ACTIV:
Output x_ASYNC_MODE_ACTIV indicates with TRUE that asynchronous operation (Mode 0 or Mode 1)
has been set up.

Output x_SL:
Output x_SL indicates with TRUE that the CANsync interface module has been configured as a slave.

Output x_MA:
 Output x_MA indicates with TRUE that the CANsync interface module has been configured as a master.

It is also possible to set combinations of outputs. If x_CANsync_ACTIV, x_SYNC_MODE_ACTIV and
x_MA are set to TRUE, for example, this means that the CANsync interface module is a master in active
synchronous operation.
212 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
7.3.11CANsync_MODE_SL

Description

You can use this function block for CANsync to set the operating mode of a CANsync interface module.

FB CANsync_MODE_SL uses library BM_TYPES_20bd00 or above.

FB CANsync_MODE_SL makes it possible to set the operating modes on the CANsync interface modu-
le. The inputs correspond to commands. The outputs display the current actual status. The signals are
each active when they are TRUE. If all the inputs are FALSE, the system does not execute any com-
mands and the last status stays active.

NOTE

Parameter input Data type Description
_BASE CANsync_SL_CTRL_BMSTRUCT Operating data for the

CANsync interface
module

x_RESET_SOFTWARE BOOL Software reset
x_SET_INIT_DATA BOOL Take over initialization

data
x_CANsync_RUN BOOL Enable active operation
x_RESET_CANsync_CONTROLLER BOOL Reset CANsync controller

(bus-off reset)
x_SYNC_MODE BOOL Set up synchronous ope-

rating mode
x_ASYNC_MODE0 BOOL Reserved
x_ASYNC_MODE1 BOOL Reserved

Parameter output Data type Description
_BASE CANsync_SL_CTRL_BMSTRUCT Operating data for the

CANsync interface
module

x_HS_ACTIV BOOL Handshake is active
x_INIT_POSSIBLE BOOL Initialization possible
x_WAIT BOOL Waiting for command for

setting the operating
mode

x_PREPARE_ACTIV BOOL Setting the operating
mode is active

x_CANsync_ACTIV BOOL Operation active
x_SYNC_MODE_ACTIV BOOL Synchronous operation
x_ASYNC_MODE_ACTIV BOOL Asynchronous operation
x_SL BOOL Slave operation
x_MA BOOL Master operation
Control Engineering �mega Drive-Line II 213
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
FB CANsync_MODE_SL does not wait for the CANsync interface module's
status message. This means that if the FB is called in the cold and warm
boot task, the outputs may not be set.
If you need a display of the status, the FB must be called again. The inputs
must then be set to FALSE. The CANsync interface module's status is then
displayed at the outputs.

Use in the cold and warm boot task:

It is possible to start an operating mode. To do this, you set an operating mode (e.g. set x_SYNC_MODE
to TRUE for synchronous operation).

The set operating mode is started with x_CANsync_RUN = TRUE.

Use in the cyclical program:

The CANsync interface module can be reinitialized. To do this, you reset the CANsync interface module
with x_RESET_SOFTWARE = TRUE (FB CANsync_MODE_SL).

After this, the system carries out reinitialization of the CANsync interface module (FB CANsync_INIT)
and sets and enables an operating mode (FB CANsync_MODE_SL).

Input/output _BASE:

At _BASE, you must connect a global variable of data type CANsync_SL_CTRL_BMSTRUCT. You must
assign this variable via declaration of global variables to the base address of the CANsync interface mo-
dule.

Example:

CANsync interface module 1 (node 1) on �mega Drive-Line II

_CANsync_CTRL_SL AT %MB3.100000 : CANsync_SL_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_ SL is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_SL_CTRL_BMSTRUCT is the data type
%MB3.100000 is the base address of the CANsync 1 interface module

on the �mega Drive-Line II

Input x_RESET_CANsync_CONTROLLER:

With x_RESET_CANsync_CONTROLLER = TRUE, you reset the CANsync controller. This causes the
CANsync controller to leave BUS-OFF status and it can be active again on the CANsync bus.

Input x_SET_INIT_DATA:

With x_SET_INIT_DATA = TRUE, the CANsync interface module applies new initialization data.

This input is only needed if you explicitly program initialization without FB CANsync_INIT.

NOTE
214 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
Input x_CANsync_RUN:

With x_CANsync_RUN = TRUE, you activate the operating mode set under x_SYNC_MODE,
x_ASYNC_MODE0 or x_ASYNC_MODE1.

Inputs x_SYNC_MODE, x_ASYNC_MODE0, x_ASYNC_MODE1:

You set the CANsync interface module's operating mode at these three inputs. Only one of the three
inputs may be TRUE.

Setting x_SYNC_MODE = TRUE sets synchronous operation.

Inputs x_ASYNC_MODE0 and x_ASYNC_MODE1 are reserved and stay FALSE.

After setting the operating mode, you use x_CANsync_RUN = TRUE to enable active operation.

The system issues a TRUE checkback signal at the outputs. Otherwise, the outputs are FALSE.

Output x_HS_ACTIV:
Output x_HS_ACTIV indicates with TRUE that handshaking is active. This is used by FB CANsync_INIT.

Output x_INIT_POSSIBLE:

Output x_INIT_POSSIBLE indicates with TRUE that the CANsync interface module is in the initialization
status. The module can then receive new initialization data or the command for setting the operating mo-
de.

Output x_WAIT:
Output x_WAIT indicates with TRUE that the CANsync interface module has applied the initialization
data and is waiting for the command for setting the operating mode.

Output x_PREPARE_ACTIV:
Output x_PREPARE_ACTIV indicates with TRUE that an operating mode is being set up.

Output x_CANsync_ACTIV:
Output x_CANsync_ACTIV indicates with TRUE that an operating mode is active.

Output x_SYNC_MODE_ACTIV:
Output x_SYNC_MODE_ACTIV indicates with TRUE that synchronous operation has been set up.

Output x_ASYNC_MODE_ACTIV:
Output x_ASYNC_MODE_ACTIV indicates with TRUE that asynchronous operation (Mode 0 or Mode 1)
has been set up.

Output x_SL:
Output x_SL indicates with TRUE that the CANsync interface module has been configured as a slave.

Output x_MA:
Output x_MA indicates with TRUE that the CANsync interface module has been configured as a master.

It is also possible to set combinations of outputs. If x_CANsync_ACTIV, x_SYNC_MODE_ACTIV and
x_SL are set to TRUE, for example, this means that the CANsync interface module is a slave in active
synchronous operation.
Control Engineering �mega Drive-Line II 215
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
7.3.12CANsync_PAR_READ_MA

Description

You can use this function block for CANsync for the CANsync master to request a parameter value from
the CANsync slave via the CANsync.

You can instantiate this FB several times if different CANsync slaves are
addressed in each case.

FB CANsync_PAR_READ_MA uses library BM_TYPES_20bd00 or above.

FB CANsync_PAR_READ_MA transfers with the values of inputs u_PAR_NR, x_PAR_FORMAT and
i_SUB_SL a read parameter job to the CANsync slave with slave number si_SL_NR. The CANsync sla-
ve processes the read parameter job and returns the result of communication. The read parameter value
is output at output ud_PAR_VALUE.

NOTE

Parameter input Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
si_SL_NR SINT

0 to 31
Slave number of the CANsync slave
to which the read parameter job is
addressed

u_PAR_NR UINT Parameter number
x_PAR_FORMAT BOOL Parameter format
i_SUB_SL INT

0 to 31
Sub-slave address (reserved)

t_TIME TIME Monitoring time
x_EN BOOL Enable
x_RESET BOOL Reset:

Parameter output Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
ud_PAR_VALUE UDINT Read parameter value
x_PAR_FORMAT_READ BOOL Read parameter format
x_BUSY BOOL Communication is active
b_ERR BYTE Error byte
i_ERR INT Error word
x_ERR BOOL Error bit
x_OK BOOL OK bit
216 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
Input/output _BASE:

At _BASE, you must connect a global variable of data type CANsync_MA_CTRL_BMSTRUCT. You
must assign this variable via declaration of global variables to the base address of the CANsync interface
module.

Example:

CANsync interface module 2 (node 2) on �mega Drive-Line II

_CANsync_CTRL_MA AT %MB3.200000 : CANsync_MA_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_MA is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_MA_CTRL_BMSTRUCT is the data type
%MB3.200000 is the base address of the CANsync 2 interface module

on the �mega Drive-Line II

Input si_SL_NR:

At input si_SL_NR, you state the slave number of the CANsync slave on the CANsync bus from which
the parameter value is read.

Input u_PAR_NR:

You state the parameter number for the read parameter job at input u_PAR_NR.

Input x_PAR_FORMAT:

At input x_PAR_FORMAT, you set the format of the requested parameter value. x_PAR_FORMAT =
FALSE means word format, x_PAR_FORMAT = TRUE means doubleword format.

Input i_SUB_SL:

This input is reserved and is not assigned.

Input t_TIME:

At input t_TIME, you state the monitoring time within which the system is to carry out the read parameter
job. If the read parameter job is not completed within the monitoring time, the system sets bit 1 of error
byte b_ERR to TRUE.

The default setting for t_TIME is 3 s.

Input x_EN:

Communication is started by means of x_EN = TRUE. Input x_EN must not be reset to FALSE until out-
put x_BUSY drops to FALSE after communication is completed. Otherwise, it is assumed that commu-
nication was cancelled deliberately and you must reset the FB (x_RESET = TRUE).

Input x_RESET:

FB CANsync_PAR_READ_MA is reset by means of x_RESET = TRUE. This is necessary after aborting
communication (by means of x_EN = FALSE) or after an error message, for example. After this, you
must set x_RESET back to FALSE.
Control Engineering �mega Drive-Line II 217
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
Output ud_PAR_VALUE:

The system makes available the read parameter value at output ud_PAR_VALUE.

Output x_BUSY:

Output x_BUSY indicates by TRUE that communication is active.

Output x_OK:

Output x_OK is set to TRUE if the read parameter job was executed correctly. Output x_OK is FALSE if
the system did not execute a read parameter job or it was not executed correctly.

Outputs x_ERR, b_ERR, i_ERR:

If an error occurs, the system sets error bit x_ERR to TRUE and outputs error byte b_ERR. In this case
output x_OK stays FALSE.

If the CANsync slave reports an error number, the system outputs an error word at output i_ERR. The
contents of the error word is determined by the application in the CANsync slave.

Error byte b_ERR:

Bit No. Error

0 Communications error, error number is in i_ERR

1 Timeout

2, 3 Reserved

4 Invalid slave number of the CANsync slaves on the CANsync bus

5 - 7 Reserved
218 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
7.3.13CANsync_PAR_SL

Description

You can use this function block for CANsync to detect a read parameter job or a write parameter job.
The FB is suitable for use with BAPS requirements data FBs BAPS_PAR_READ and
BAPS_PAR_WRITE.

FB CANsync_PAR_SL uses library BM_TYPES_20bd00 or above.

FB CANsync_PAR_SL detects a read parameter job or a write parameter job and makes available the
respective data at the outputs. The application processes the jobs and transfers the results to the FB via
the inputs. The FB then reports the results to the CANsync slave interface module and indicates that the
results were sent to the CANsync master.

In the case of a read parameter job, the system indicates the job with x_READ = TRUE and outputs the
parameter number at u_PAR_NR. The application expects the parameter value at
ud_PAR_VALUE_READ and the parameter format at x_PAR_FORMAT_READ. With x_OK_IN =
TRUE, the system takes the parameter value and the parameter format and sends them to the CANsync

NOTE

Parameter input Data type Description
_BASE CANsync_SL_CTRL_BMSTRUCT Operating data for the CANsync

interface module
ud_PAR_VALUE_READ UDINT Parameter value (read)
x_PAR_FORMAT_READ BOOL Parameter format (read)
i_ERR INT Error number (application)
x_ERR_IN BOOL Error bit (application)
x_OK_IN BOOL OK bit (application)
x_EN BOOL Enable
x_RESET BOOL Reset:

Parameter output Data type Description
_BASE CANsync_SL_CTRL_BMSTRUCT Operating data for the CANsync

interface module
x_RESET_JOB BOOL Reset (change of job)
x_READ BOOL Read parameter job
x_WRITE BOOL Write parameter job
u_PAR_NR UINT Parameter number
x_PAR_FORMAT_WRITE BOOL Parameter format (write)
ud_PAR_VALUE_WRITE UDINT Parameter value (write)
x_ACTIV BOOL Job logged on, waiting for result of

application
x_BUSY BOOL Communication is active
x_OK BOOL OK bit
Control Engineering �mega Drive-Line II 219
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
master. If the application reports an error, the system can connect an error number at i_ERR and set
x_ERR_IN = TRUE. In this case, the error number is sent to the CANsync master.

In the case of a write parameter job, the system indicates the job with x_WRITE = TRUE, and outputs
the parameter number at u_PAR_NR, the parameter format at x_PAR_FORMAT_WRITE and the para-
meter value at ud_PAR_VALUE_WRITE. The application expects the result of communication. With
x_OK_IN = TRUE, the system reports to the CANsync master that the write parameter job was executed
successfully. If the application reports an error, the system can connect an error number at i_ERR and
set x_ERR_IN = TRUE. In this case, the error number is sent to the CANsync master.

In the �mega Drive-Line II with a CANsync slave interface module, it is pos-
sible to pass on read parameter jobs and write parameter jobs to the V-con-
troller. The FBs of BAPS requirements data communication are used for
this.
In the following section, some of the inputs and outputs have listed in brak-
kets the respective input or output of the FBs of BAPS-requirements data
communication.

Input/output _BASE:

At _BASE, you must connect a global variable of data type CANsync_SL_CTRL_BMSTRUCT. You must
assign this variable via declaration of global variables to the base address of the CANsync interface mo-
dule.

Example:

CANsync interface module 1 (node 1) on �mega Drive-Line II

_CANsync_CTRL_SL AT %MB3.100000 : CANsync_SL_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_ SL is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_SL_CTRL_BMSTRUCT is the data type
%MB3.100000 is the base address of the CANsync 1 interface module

on the �mega Drive-Line II

Input ud_PAR_VALUE_READ:

In the case of a read parameter job, the system expects the parameter value at ud_PAR_VALUE_READ.
The application program makes available this parameter value. (Input ud_PAR_VALUE_READ can be
connected to FB BAPS_PAR_READ, output ud_PAR_VALUE).

Input x_PAR_FORMAT_READ:

In the case of a read parameter job, the system expects the parameter format at
x_PAR_FORMAT_READ. With x_PAR_FORMAT_READ = FALSE, you state that the parameter value
at ud_PAR_VALUE_READ is of WORD format (16-bit); with x_PAR_FORMAT_READ = TRUE, you
state that the parameter value at ud_PAR_VALUE_READ is of DOUBLEWORD format (32-bit).

The application program makes available the parameter format. (Input x_PAR_FORMAT_READ can be
connected to FB BAPS_PAR_READ, output x_PAR_FORMAT).

NOTE
220 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
Inputs x_ERR_IN, i_ERR:

If the application program cannot read or fulfill the CANsync-Master's parameter job, it is possible to state
an error number at i_ERR and set x_ERR_IN = TRUE. In this case, the error number is sent to the CAN-
sync master.

The application program makes available the error number, i_ERR, and the error bit x_ERR_IN. (Input
x_ERR_IN can be linked to FB BAPS_PAR_WRITE, output x_ERR and/or FB BAPS_PAR_READ, out-
put x_ERR. (Input i_ERR can be linked to FB BAPS_PAR_WRITE, output i_ERR_COMM and/or FB
BAPS_PAR_READ, output i_ERR_COMM.)

Input x_OK_IN:

If the application program has fulfilled the CANsync master's parameter job, the system sets input
x_OK_IN = TRUE.

In the case of a read parameter job, the system expects the read parameter value at
ud_PAR_VALUE_READ and the format of the read parameter at x_PAR_FORMAT_READ. In the case
of a write parameter job, the system does not expect any other values.

The application program must make available the OK bit. (Input x_OK can be linked to FB
BAPS_PAR_WRITE, output x_OK and/or FB BAPS_PAR_READ, output x_OK.

Input x_EN:

FB CANsync_PAR_SL is activated with x_EN = TRUE . The system only reports parameter jobs and
sends answers to the CANsync master when the FB is activated.

If FB CANsync_PAR_SL is deactivated (x_EN = FALSE), the system must wait until the last parameter
job has been processed and sent to the CANsync master (x_BUSY = FALSE). Otherwise, it is assumed
that communication was cancelled deliberately and you must then reset the FB with x_RESET = TRUE.

Input x_RESET:

You can use x_RESET = TRUE to reset the FB. This is necessary after aborting communication (by me-
ans of x_EN = FALSE) or after an error message, for example. After this, you must set x_RESET back
to FALSE.

Output x_RESET_JOB:

The CANsync master can cancel a parameter job . In this case, the system sets output x_RESET_JOB
to TRUE. Output x_RESET_JOB is set back to FALSE when the CANsync master starts a new parame-
ter job. (Output x_RESET_JOB can be linked to FB BAPS_PAR_WRITE, input x_RESET, FB
BAPS_PAR_READ, input x_RESET and/or FB BAPS_SD_CONTROL, input x_RESET.)

Output x_READ:

Output x_READ is set to TRUE if a read parameter job is pending. (Output x_READ can be connected
to FB BAPS_PAR_READ, input x_EN).

Output x_READ is set to FALSE if no read parameter job is pending.

Output x_WRITE:

Output x_WRITE is set to TRUE if a write parameter job is pending. (Output x_WRITE can be connected
to FB BAPS_PAR_WRITE, input x_EN). Output x_WRITE is set to FALSE if no write parameter job is
pending.
Control Engineering �mega Drive-Line II 221
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
Output u_PAR_NR:

The parameter number of the parameter job is output at output u_PAR_NR. (Output u_PAR_NR can be
linked to FB BAPS_PAR_WRITE, input u_PAR_NR or FB BAPS_PAR_READ, input u_PAR_NR).

Output x_PAR_FORMAT:

The system outputs at output x_PAR_FORMAT the parameter format of parameter u_PAR_NR in the
case of a write parameter job.

x_PAR_FORMAT = FALSE means WORD format (16-bit) and x_PAR_FORMAT = TRUE means
DOUBLEWORD format (32-bit). (Output x_PAR_FORMAT can be connected to FB
BAPS_PAR_WRITE, input x_PAR_FORMAT).

Output ud_PAR_VALUE:

The system outputs at output x_PAR_VALUE the parameter value of parameter u_PAR_NR in the case
of a write parameter job. (Output ud_PAR_VALUE_VALUE can be connected to FB
BAPS_PAR_WRITE, input ud_PAR_VALUE).

Output x_ACTIV:

Output x_ACTIV indicates with TRUE that FB CANsync_PAR_SL is waiting during a parameter job for
the result of the parameter job (input x_OK_IN or x_ERR_IN). Otherwise, output x_ACTIV is set to FAL-
SE.

Output x_BUSY:

Output x_BUSY indicates with TRUE that FB CANsync_PAR_SL is waiting for the result of the read or
write parameter job and that the answer to the CANsync master is ready but the CANsync master has
not requested it. Otherwise, output x_BUSY is set to FALSE.

Output x_OK:

The system sets output x_OK to TRUE if the CANsync master has fetched the answer. In this connec-
tion, it does not matter whether the answer in question is the error answer or the answer for correct pro-
cessing of the job. Output x_OK is FALSE if no parameter job has yet been executed, the parameter job
has not been executed or the CANsync master has not fetched the answer.
222 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
7.3.14CANsync_PAR_WRITE_MA

Description

You can use this function block for CANsync for the CANsync master to send a parameter value to the
CANsync slave via the CANsync bus.

You can instantiate this FB several times if different CANsync slaves are
addressed in each case.

FB CANsync_PAR_WRITE_MA uses library BM_TYPES_20bd00 or abo-
ve.

FB CANsync_PAR_WRITE_MA transfers with the values of inputs u_PAR_NR, x_PAR_FORMAT,
i_SUB_SL and ud_PAR_VALUE a write parameter job to the CANsync slave with slave number
si_SL_NR. The CANsync slave processes the write parameter job and returns the result of communica-
tion.

NOTE

Parameter input Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
si_SL_NR SINT

0 to 31
Slave number of the CANsync slave to
which the write parameter job is
addressed

u_PAR_NR UINT Parameter number
x_PAR_FORMAT BOOL Parameter format
i_SUB_SL INT

0 to 31
Sub-slave address (reserved)

ud_PAR_VALUE UDINT Parameter value to be written
t_TIME TIME Monitoring time
x_EN BOOL Enable
x_RESET BOOL Reset:

Parameter output Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
x_BUSY BOOL Communication is active
i_ERR INT Error number
b_ERR BYTE Error byte
x_ERR BOOL Error bit
x_OK BOOL OK bit
Control Engineering �mega Drive-Line II 223
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
Input/output _BASE:

At _BASE, you must connect a global variable of data type CANsync_MA_CTRL_BMSTRUCT. You
must assign this variable via declaration of global variables to the base address of the CANsync interface
module.

Example:

CANsync interface module 2 (node 2) on �mega Drive-Line II

_CANsync_CTRL_MA AT %MB3.200000 : CANsync_MA_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_MA is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_MA_CTRL_BMSTRUCT is the data type
%MB3.200000 is the base address of the CANsync 2 interface module

on the �mega Drive-Line II

Input si_SL_NR:

At input si_SL_NR, you state the slave number of the CANsync slave on the CANsync bus to which the
parameter value is sent.

Input u_PAR_NR:

You state the parameter number for the write parameter job at input u_PAR_NR.

Input x_PAR_FORMAT:

At input x_PAR_FORMAT, you set the format of the parameter value that is to be transferred.
x_PAR_FORMAT = FALSE means word format, x_PAR_FORMAT = TRUE means doubleword format.

Input i_SUB_SL:

This input is reserved and is not assigned.

Input ud_PAR_VALUE:

You state the parameter value to be transferred/written at input ud_PAR_VALUE.

Input t_TIME:

At input t_TIME, you state the monitoring time within which the system is to carry out the write parameter
job. If the write parameter job is not completed within the monitoring time, the system sets bit 1 of error
byte b_ERR to TRUE.

The default setting for t_TIME is 3 s.

Input x_EN:

Communication is started by means of x_EN = TRUE. Input x_EN must not be reset to FALSE until out-
put x_BUSY drops to FALSE after communication is completed. Otherwise, it is assumed that commu-
nication was cancelled deliberately and you must reset the FB (x_RESET = TRUE).
224 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
Input x_RESET:

FB CANsync_PAR_WRITE_MA is reset by means of x_RESET = TRUE. This is necessary after abor-
ting communication (by means of x_EN = FALSE) or after an error message, for example. After this, you
must set x_RESET back to FALSE.

Output x_BUSY:

Output x_BUSY indicates by TRUE that communication is active. Otherwise, x_BUSY = FALSE.

Output x_OK:

Output x_OK is set to TRUE if the write parameter job was executed correctly. Output x_OK is FALSE
if the system did not execute a write parameter job or it was not executed correctly.

Outputs x_ERR, b_ERR, i_ERR:

If an error occurs, the system sets error bit x_ERR to TRUE and outputs error byte b_ERR. In this case
output x_OK stays FALSE.

If the CANsync slave reports an error number, the system outputs an error word at output i_ERR. The
contents of the error word is determined by the application in the CANsync slave.

Error byte b_ERR:

Bit No. Error

0 Communications error, error number is in i_ERR

1 Timeout

2, 3 Reserved

4 Invalid slave number of the CANsync slaves on the CANsync bus

5 - 7 Reserved
Control Engineering �mega Drive-Line II 225
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
7.3.15CANsync_PD_CFG_MA

Description

You can use this function block for CANsync to configure the assignment of the CANsync interface mo-
dule's reference value message frames for a CANsync master.

FB CANsync_PD_CFG_MA uses library BM_TYPES_20bd00 or above.

Using FB CANsync_PD_CFG_MA, you:

� assign eight 32-bit reference values to reference value message frames 1 and 2 (send)

in a CANsync master.

In the CANsync master, the application can write eight 32-bit reference values. The reference value
numbers are from 0 to 7.

A reference value is composed of a lowword (bits 0 to 15) and a highword (bit 16 to 31).

In the two reference value message frames, it is possible to send (in each case) 4 * 16-bit data to CAN-
sync slaves. That is four words numbered 0 to 3.

Using FB CANsync_PD_CFG_MA, you specify which data is to be entered in the four words (words 0 to
3) of reference value message frame 1 and which is to be entered in the four words (words 0 to 3) of
reference value message frame 2.

You can choose the data for reference value message frame 1 from reference values 0 to 3 and the data
for reference value message frame 2 from reference values 4 to 7.

You can assign to each word in a reference value message frame a lowword or a highword of a reference
value. Two words are needed in the reference value message frame when transferring a 32-bit reference
value.

NOTE

Parameter input Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
a_WRC1 SINT_4_BMARRAY Reference value numbers for reference

value message frame 1
a_HL_WRC1 BOOL_4_BMARRAY Assignment of highword or lowword for

reference value message frame 1
a_WRC2 SINT_4_BMARRAY Reference value numbers for reference

value message frame 2
a_HL_WRC2 BOOL_4_BMARRAY Assignment of highword or lowword for

reference value message frame 2

Parameter output Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
226 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
Input/output _BASE:

At _BASE, you must connect a global variable of data type CANsync_MA_CTRL_BMSTRUCT. You
must assign this variable via declaration of global variables to the base address of the CANsync interface
module.

Example:

CANsync interface module 2 (node 2) on �mega Drive-Line II

_CANsync_CTRL_MA AT %MB3.200000 : CANsync_MA_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_MA is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_MA_CTRL_BMSTRUCT is the data type
%MB3.200000 is the base address of the CANsync 2 interface module

on the �mega Drive-Line II

Input a_WRC1:

Assignment of

"Reference value (0 to 3)" -> "word in reference value message frame 1" is carried out in
a_WRC1.

a_WRC1[word number] := reference value number

Input a_HL_WRC1:

Assignment of

"Lowword or highword of the selected reference value" -> "word in reference value message fra-
me 1" is carried out in a_HL_WRC1.

a_HL_WRC1[word number] := FALSE (if lowword)

a_HL_WRC1[word number] := TRUE (if highword)

Example:

Input a_WRC2:

Assignment of

"Reference value (4 to 7)" -> "word in reference value message frame 2" is carried out in
a_WRC2.

a_WRC2[word number] := reference value number

Word number in
reference value

message frame 1

Selected reference
value

Connection at input
a_WRC1

Connection at input
a_HL_WRC1

0 Reference value 1
lowword

a_WRC1[0] = 1 a_HL_WRC1[0] = 1

1 Reference value 1
highword

a_WRC1[1] = 1 a_HL_WRC1[1] = 1

2 Reference value 0 word a_WRC1[2] = 0 a_HL_WRC1[2] = 0 or
open

3 Reference value 2 word a_WRC1[3] = 2 a_HL_WRC1[3] = 0 or
open
Control Engineering �mega Drive-Line II 227
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
Input a_HL_WRC2:

Assignment of

"Lowword or highword of the selected reference value" -> "word in reference value message fra-
me 2" is carried out in a_HL_WRC2.

a_HL_WRC2[word number] := FALSE (if lowword)

a_HL_WRC2[word number] := TRUE (if highword)

If you do not want to assign a reference value to a word in reference value message frame 1 or 2, enter
-1 as the reference value number at the corresponding entry in a_WRC1 or a_WRC2 respectively.

In this case, the corresponding setting in a_HL_WRC1 or a_HL_WRC2 is meaningless.

a_WRC1[word number] := SINT#-1

a_WRC2[word number] := SINT#-1

Example:
You do not want to assign a reference value to word 1 of reference value message frame 2.

Reference value message frames are assigned to reference values in the CANsync slave. By default,
this assignment is carried out in a similar way to the CANsync master. The system does not cross-check
the assignment in the CANsync master and the CANsync slave, since there are also reasonable appli-
cations for assignments that are different.

Word number in
reference value

message frame 2

Selected reference
value

Connection at input
a_WRC2

Connection at input
a_HL_WRC2

1 None a_WRC2[1] = -1 a_HL_WRC2[1]
meaningless
228 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
7.3.16CANsync_PD_CFG_READ_MA

Description

You can use this function block for CANsync to configure the assignment of the actual value message
frames of the CANsync slaves in the CANsync interface module for a CANsync master.

FB CANsync_PD_CFG_READ_MA uses library BM_TYPES_20bd00 or
above.

Using FB CANsync_PD_CFG_READ_MA, you:

� assign actual value message frames 1 and 2 of a CANsync slave (receive) to eight 32-bit actual va-
lues

in a CANsync master.

In the CANsync master, the application can read eight 32-bit reference values of each CANsync slave.

The CANsync slaves have numbers 0 to 31.

The actual value numbers are from 0 to 7.

An actual value is composed of a lowword (bits 0 to 15) and a highword (bit 16 to 31).

In the CANsync master, it is possible to receive for each CANsync slave two actual value message fra-
mes (each) containing 4 * 16 bit data. That is four words (in each case) numbered 0 to 3.

Using FB CANsync_PD_CFG_READ_MA, you specify for a CANsync slave the actual values to which
data from the four words (words 0 to 3) of the CANsync slave's actual value message frame 1 is to be
assigned and the actual values to which the data from the four words (words 0 to 3) of its actual value
message frame 2 is to be assigned.

NOTE

Parameter input Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
si_SL_NR SINT

0 to 31
Slave number of the CANsync slaves
from which actual values are received

a_RDC1 SINT_4_BMARRAY Actual value numbers for actual value
message frame 1

a_HL_RDC1 BOOL_4_BMARRAY Assignment of highword or lowword for
actual value message frame 1

a_RDC2 SINT_4_BMARRAY Actual value numbers for actual value
message frame 2

a_HL_RDC2 BOOL_4_BMARRAY Assignment of highword or lowword for
actual value message frame 2

Parameter output Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
Control Engineering �mega Drive-Line II 229
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
You can assign the data from actual value message frame 1 to actual values 0 to 3 and the data for ac-
tual value message frame 2 to actual values 4 to 7.

You can assign each word in an actual value message frame to only one lowword or highword of an ac-
tual value.

When transferring a 32-bit actual value, two words are needed in the actual value message frame (one
word from the actual value message frame is assigned to the lowword of an actual value and another
word in this actual value message frame is assigned to the highword of this actual value).

Input/output _BASE:

At _BASE, you m ust connect a g lobal variable of da ta type C ANsync_M A_CTRL_BM STRUC T. You m ust
assign th is variable via declaration o f global variab les to the base address o f the CAN sync in terface modu le.

Example:

CANsync interface module 2 (node 2) on �mega Drive-Line II

_CANsync_CTRL_MA AT %MB3.200000 : CANsync_MA_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_MA is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_MA_CTRL_BMSTRUCT is the data type
%MB3.200000 is the base address of the CANsync 2 interface module

on the �mega Drive-Line II

Input si_SL_NR:

At input si_SL_NR, you state the slave number of the CANsync slave on the CANsync bus whose actual
value message frames are to be configured.

Input a_RDC1:

Assignment of

"Word in actual value message frame 1" -> "actual value (0 to 3)" is carried out in a_RDC1.

a_RDC1[word number] := actual value number

Input a_HL_RDC1:

Assignment of

"Word in actual value message frame 1" -> "lowword or highword of the selected actual value"
is carried out in a_HL_RDC1.

a_HL_RDC1[word number] := FALSE (if lowword)

a_HL_RDC1[word number] := TRUE (if highword)

Example:

Word number in actual
value message frame

1

Selected actual value Connection at input
a_RDC1

Connection at input
a_HL_RDC1

0 Actual value 1 lowword a_RDC1[0] = 1 a_HL_RDC1[0] = 0

1 Actual value 1 highword a_RDC1[1] = 1 a_HL_RDC1[1] = 1

2 Actual value 0 word a_RDC1[2] = 0 a_HL_RDC1[2] = 0

3 Actual value 2 word a_RDC1[3] = 2 a_HL_RDC1[3] = 0
230 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
Input a_RDC2:

Assignment of

"Word in actual value message frame 2" -> "actual value (4 to 7)" is carried out in a_RDC2.

a_RDC2[word number] := actual value number

Input a_HL_RDC2:

Assignment of

"Word in actual value message frame 2" -> "lowword or highword of the selected actual value"
is carried out in a_HL_RDC2.

a_HL_RDC2[word number] := FALSE (if lowword)

a_HL_RDC2[word number] := TRUE (if highword)

If you do not want to assign an actual value to a word in actual value message frame 1 or 2, enter -1 as
the reference value number at the corresponding entry in a_RDC1 or a_RDC2 respectively. In this case,
the corresponding setting in a_HL_RDC1 or a_HL_RDC1 is meaningless.

a_RDC1[word number] := SINT#-1

a_RDC2[word number] := SINT#-1

Example:
You do not want to assign word 1 of actual value message frame 2 to an actual value.

Actual values are assigned to the words of the actual value message frames in the CANsync slave. By
default, this assignment is carried out in a similar way to the CANsync master. The system does not
cross-check the assignment in the CANsync master and the CANsync slave, since there are also rea-
sonable applications for assignments that are different.

Word number in actual
value message frame

2

Selected actual value Connection at input
a_RDC2

Connection at input
a_HL_RDC2

1 None a_RDC2[1] = -1 a_HL_RDC2[1]
meaningless
Control Engineering �mega Drive-Line II 231
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
7.3.17CANsync_PD_CFG_READ_SL

Description

You can use this function block for CANsync to configure the assignment of the actual value message
frames of the CANsync slaves in the CANsync interface module for a CANsync slave.

FB CANsync_PD_CFG_READ_SL uses library BM_TYPES_20bd00 or
above.

Using FB CANsync_PD_CFG_READ_SL, you:

� assign actual value message frames 1 and 2 of another CANsync slave (receive) to eight 32-bit ac-
tual values

in a CANsync slave.

Every CANsync slave can monitor the actual value message frames of the other CANsync slaves and
use the data in the actual value message frames.

In the CANsync slave, the application can read eight 32-bit actual values of every other CANsync slave
on the CANsync bus.

The CANsync slaves have numbers 0 to 31.

The actual value numbers are from 0 to 7.

An actual value is composed of a lowword (bits 0 to 15) and a highword (bit 16 to 31).

In the CANsync slave, it is possible to receive the two actual value message frames of each CANsync
slave, which each contain 4 * 16 bit data. That is four words each numbered 0 to 3.

NOTE

Parameter input Data type Description
_BASE CANsync_SL_CTRL_BMSTRUCT Operating data for the CANsync

interface module
si_SL_NR SINT

0 to 31
Slave number of the CANsync slaves
from which actual values are received

a_RDC1 SINT_4_BMARRAY Actual value numbers for actual value
message frame 1

a_HL_RDC1 BOOL_4_BMARRAY Assignment of highword or lowword for
actual value message frame 1

a_RDC2 SINT_4_BMARRAY Actual value numbers for actual value
message frame 2

a_HL_RDC2 INOUTPUT4_BOOL_BMARRAY Assignment of highword or lowword for
actual value message frame 2

Parameter output Data type Description
_BASE CANsync_SL_CTRL_BMSTRUCT Operating data for the CANsync

interface module
232 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
Using FB CANsync_PD_CFG_READ_SL, you specify for another CANsync slave the actual values to
which data from the four words (words 0 to 3) of actual value message frame 1 is to be assigned and the
actual values to which the data from the four words (words 0 to 3) of the other CANsync slave's actual
value message frame 2 is to be assigned.

You can assign the data from actual value message frame 1 to actual values 0 to 3 and the data for ac-
tual value message frame 2 to actual values 4 to 7.

When transferring a 32-bit actual value, two words are needed in the actual value message frame (one
word from the actual value message frame is assigned to the lowword of an actual value and another
word in this actual value message frame is assigned to the highword of this actual value).

Input/output _BASE:

At _BASE, you must connect a global variable of data type CANsync_SL_CTRL_BMSTRUCT. You must
assign this variable via declaration of global variables to the base address of the CANsync interface mo-
dule.

Example:

CANsync interface module 1 (node 1) on �mega Drive-Line II

_CANsync_CTRL_SL AT %MB3.100000 : CANsync_SL_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_ SL is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_SL_CTRL_BMSTRUCT is the data type
%MB3.100000 is the base address of the CANsync 1 interface module

on the �mega Drive-Line II

Input si_SL_NR:

At input si_SL_NR, you state the slave number of the CANsync slave on the CANsync bus whose actual
value message frames are to be configured.

Input a_RDC1:

Assignment of

"Word in actual value message frame 1" -> "actual value (0 to 3)" is carried out in a_RDC1.

a_RDC1[word number] := actual value number

Input a_HL_RDC1:

Assignment of

"Word in actual value message frame 1" -> "lowword or highword of the selected actual value"
is carried out in a_HL_RDC1.

a_HL_RDC1[word number] := FALSE (if lowword)

a_HL_RDC1[word number] := TRUE (if highword)
Control Engineering �mega Drive-Line II 233
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
Example:

Input a_RDC2:

Assignment of

"Word in actual value message frame 2" -> "actual value (4 to 7)" is carried out in a_RDC2.

a_RDC2[word number] := actual value number

Input a_HL_RDC2:

Assignment of

"Word in actual value message frame 2" -> "lowword or highword of the selected actual value"
is carried out in a_HL_RDC2.

a_HL_RDC2[word number] := FALSE (if lowword)

a_HL_RDC2[word number] := TRUE (if highword)

If you do not want to assign an actual value to a word in actual value message frame 1 or 2, enter -1 as
the reference value number at the corresponding entry in a_RDC1 or a_RDC2 respectively. In this case,
the corresponding setting in a_HL_RDC1 or a_HL_RDC1 is meaningless.

a_RDC1[word number] := SINT#-1

a_RDC2[word number] := SINT#-1

Example:
You do not want to assign word 1 of actual value message frame 2 to an actual value.

.

In the other CANsync slave, actual values are assigned to the words of the actual value message fra-
mes. By default, this assignment is carried out in a similar way to the (receiving) CANsync slave. The
system does not cross-check the assignment in the (receiving) CANsync slave and the other CANsync
slave, since there are also reasonable applications for assignments that are different.

Word number in actual
value message frame

1

Selected actual value Connection at input
a_RDC1

Connection at input
a_HL_RDC1

0 Actual value 1 lowword a_RDC1[0] = 1 a_HL_RDC1[0] = 0

1 Actual value 1 highword a_RDC1[1] = 1 a_HL_RDC1[1] = 1

2 Actual value 0 word a_RDC1[2] = 0 a_HL_RDC1[2] = 0

3 Actual value 2 word a_RDC1[3] = 2 a_HL_RDC1[3] = 0

Word number in actual
value message frame

2

Selected actual value Connection at input
a_RDC2

Connection at input
a_HL_RDC2

1 None a_RDC2[1] = -1 a_HL_RDC2[1]
meaningless
234 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
7.3.18CANsync_PD_CFG_SL

Description

You can use this function block for CANsync to configure the assignment of the CANsync interface mo-
dule's specified and actual value message frames for a CANsync slave.

FB CANsync_PD_CFG_SL uses library BM_TYPES_20bd00 or above.

Using FB CANsync_PD_CFG_SL you carry out in a CANsync slave:

� assignment of reference value message frames 1 and 2 (receive) to eight 32-bit reference values

and

� assignment of eight 32-bit actual values to actual value message frames 1 and 2 (send)

NOTE

Parameter input Data type Description
_BASE CANsync_SL_CTRL_BMSTRUCT Operating data for the CANsync interface

module
a_WRC1 SINT_4_BMARRAY Reference value numbers for reference

value message frame 1
a_HL_WRC1 BOOL_4_BMARRAY Assignment of highword or lowword for

reference value message frame 1
a_WRC2 SINT_4_BMARRAY Reference value numbers for reference

value message frame 2
a_HL_WRC2 BOOL_4_BMARRAY Assignment of highword or lowword for

reference value message frame 2
a_RDC1 SINT_4_BMARRAY Actual value numbers for actual value

message frame 1
a_HL_RDC1 BOOL_4_BMARRAY Assignment of highword or lowword for

actual value message frame 1
a_RDC2 SINT_4_BMARRAY Actual value numbers for actual value

message frame 2
a_HL_RDC2 BOOL_4_BMARRAY Assignment of highword or lowword for

actual value message frame 2

Parameter output Data type Description
_BASE CANsync_SL_CTRL_BMSTRUCT Operating data for the CANsync interface

module
Control Engineering �mega Drive-Line II 235
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
Receiving reference values:

In the CANsync slave, the application can write eight 32-bit reference values. The reference value num-
bers are from 0 to 7.

A reference value is composed of a lowword (bits 0 to 15) and a highword (bit 16 to 31).

In the CANsync slave, it is possible to receive two reference value message frames each containing 4 *
16 bit data. That is four words each numbered 0 to 3.

Using FB CANsync_PD_CFG_MA, you specify the reference values to which the data from the four
words (words 0 to 3) of reference value message frame 1 is to be assigned and the reference values to
which the data from the four words (words 0 to 3) of reference value message frame 2 is to be assigned.

You can assign the data from reference value message frame 1 to reference values 0 to 3 and the data
from reference value message frame 2 can be assigned to reference values 4 to 7.

You can assign each word in a reference value message frame to only one lowword or highword of an
actual value.

When transferring a 32-bit reference value, two words are needed in the reference value message frame
(one word from the reference value message frame is assigned to the lowword of a reference value and
another word in this reference value message frame is assigned to the highword of this reference value).

Sending actual values:

In the CANsync slave, the application can also write eight 32-bit actual values. The actual value numbers
are from 0 to 7.

An actual value is composed of a lowword (bits 0 to 15) and a highword (bit 16 to 31).

In the two actual value message frames, it is possible to send 4 * 16-bit data each to the CANsync ma-
ster. That is four words numbered 0 to 3.

Using FB CANsync_PD_CFG_SL, you specify which data is to be entered in the four words (words 0 to
3) of actual value message frame 1 and which is to be entered in the four words (words 0 to 3) of actual
value message frame 2.

You can choose the data for actual value message frame 1 from actual values 0 to 3 and the data for
actual value message frame 2 from actual values 4 to 7.

You can assign to each word in an actual value message frame a lowword or a highword of an actual
value. Two words are needed in the actual value message frame when transferring a 32-bit actual value.

Input/output _BASE:

At _BASE, you must connect a global variable of data type CANsync_SL_CTRL_BMSTRUCT. You must
assign this variable via declaration of global variables to the base address of the CANsync interface mo-
dule.

Example:

CANsync interface module 1 (node 1) on �mega Drive-Line II

_CANsync_CTRL_SL AT %MB3.100000 : CANsync_SL_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_ SL is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_SL_CTRL_BMSTRUCT is the data type
%MB3.100000 is the base address of the CANsync 1 interface module

on the �mega Drive-Line II
236 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
Input a_WRC1:

Assignment of

"W ord in re ference va lue m essage frame 1" -> "refe rence value (0 to 3)" is carried out in a_W RC 1.

a_WRC1[word number] := reference value number

Input a_HL_WRC1:

Assignment of

"Word in reference value message frame 1" -> "Lowword or highword of the selected reference
value" is carried out in a_HL_WRC1.

a_HL_WRC1[word number] := FALSE (if lowword)

a_HL_WRC1[word number] := TRUE (if highword)

Example:

Input a_WRC2:

Assignment of

"W ord in re ference va lue m essage frame 2" -> "refe rence value (4 to 7)" is carried out in a_W RC 2.

a_WRC2[word number] := reference value number

Input a_HL_WRC2:

Assignment of

"Word in reference value message frame 2" -> "Lowword or highword of the selected reference
value" is carried out in a_HL_WRC2.

a_HL_WRC2[word number] := FALSE (if lowword)

a_HL_WRC2[word number] := TRUE (if highword)

If you do not want to assign a word from reference value reference value message frame 1 or 2 to a
reference value, enter -1 as the reference value number at the corresponding entry in a_WRC1 or
a_WRC2 respectively.

In this case, the corresponding setting in a_HL_WRC1 or a_HL_WRC2 is meaningless.

a_WRC1[word number] := SINT#-1

a_WRC2[word number] := SINT#-1

Word number in
reference value

message frame 1

Selected reference
value

Connection at input
a_WRC1

Connection at input
a_HL_WRC1

0 R e ference va lue 1 low w ord a_WRC1[0] = 1 a_HL_WRC1[0] = 1

1 Reference va lue 1 h ighw ord a_WRC1[1] = 1 a_HL_WRC1[1] = 1

2 Reference value 0 word a_WRC1[2] = 0 a_HL_WRC1[2] = 0

3 Reference value 2 word a_WRC1[3] = 2 a_HL_WRC1[3] = 0
Control Engineering �mega Drive-Line II 237
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
Example:

You do not want to assign word 1 of reference value message frame 2 to a reference value.

Reference values are assigned to the words of the reference value message frames in the CANsync ma-
ster. By default, this assignment is carried out in a similar way to the CANsync slave. The system does
not cross-check the assignment in the CANsync master and the CANsync slave, since there are also
reasonable applications for assignments that are different.

Input a_RDC1:

Assignment of

"Actual value (0 to 3)" -> "word in actual value message frame 1" is carried out in a_RDC1.

a_RDC1[word number] := actual value number

Input a_HL_RDC1:

Assignment of

"Lowword or highword of the selected actual value" -> "word in actual value message frame 1"
is carried out in a_HL_RDC1.

a_HL_RDC1[word number] := FALSE (if lowword)

a_HL_RDC1[word number] := TRUE (if highword)

Example:

Input a_RDC2:

Assignment of

"Actual value (4 to 7)" -> "Word in actual value message frame 2" is carried out in a_RDC2.

a_RDC2[word number] := actual value number

Word number in
reference value

message frame 2

Selected reference
value

Connection at input
a_WRC2

Connection at input
a_HL_WRC2

1 None a_WRC2[1] = -1 a_HL_WRC2[1]
meaningless

Word number in actual
value message frame

1

Selected actual value Connection at input
a_RDC1

Connection at input
a_HL_RDC1

0 Actual value 1 lowword a_RDC1[0] = 1 a_HL_RDC1[0] = 0

1 Actual value 1 highword a_RDC1[1] = 1 a_HL_RDC1[1] = 1

2 Actual value 0 word a_RDC1[2] = 0 a_HL_RDC1[2] = 0

3 Actual value 2 word a_RDC1[3] = 2 a_HL_RDC1[3] = 0
238 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
Input a_HL_RDC2:

Assignment of

"Lowword or highword of the selected actual value" -> "word in actual value message frame 2"
is carried out in a_HL_RDC2.

a_HL_RDC2[word number] := FALSE (if lowword)

a_HL_RDC2[word number] := TRUE (if highword)

If you do not want to assign an actual value to a word in actual value message frame 1 or 2, enter -1 as
the reference value number at the corresponding entry in a_RDC1 or a_RDC2 respectively. In this case,
the corresponding setting in a_HL_RDC1 or a_HL_RDC1 is meaningless.

a_RDC1[word number] := SINT#-1

a_RDC2[word number] := SINT#-1

Example:
You do not want to assign an actual value to word 1 of actual value message frame 2.

In the CANsync master, the words of the actual value message frames are assigned to actual values.
By default, this assignment is carried out in a similar way to the CANsync slave. The system does not
cross-check the assignment in the CANsync master and the CANsync slave, since there are also rea-
sonable applications for assignments that are different.

Word number in actual
value message frame

2

Selected actual value Connection at input
a_RDC2

Connection at input
a_HL_RDC2

1 None a_RDC2[1] = -1 a_HL_RDC2[1]
meaningless
Control Engineering �mega Drive-Line II 239
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
7.3.19CANsync_PD_COMM_MA

Description

You can use this function block for CANsync to carry out process data communication (of reference va-
lues and actual values) of the CANsync master interface module.

FB CANsync_PD_COMM_MA uses library BM_TYPES_20bd00 or above.

NOTE

Parameter input Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
a_RD_ARRAY CANsync_RD_BMARRAY Output array for the actual values

of the CANsync slaves
a_WR_VALUES_SEND DINT_8_BMARRAY Reference va lues that a re to be sent
si_WRC1_SEND SINT

5
Command for reference value
message frame 1 to be sent

si_WRC2_SEND SINT
5

Command for reference value
message frame 2 to be sent

si_RD_SL_NR1_RECEIVE SINT
-1, 0 to 31

Slave number of the CANsync
slave from which actual value
message frame 1 is to be
requested

si_RD_SL_NR2_RECEIVE SINT
-1, 0 to 31

Slave number of the CANsync
slave from which actual value
message frame 2 is to be
requested

si_MAX_SL_NR SINT
0 to 31

Maximum slave number for

automatic incrementinga)

a) This input corresponds to input si_MAX_SL_NR am FB CANsync_COMM_CONTROL_MA as the maxi-
mum slave number for automatic polling for send control word jobs, parameter jobs and/or upload/down-
load jobs.

x_COPY_TO_RD_ARRAY BOOL Indication of whether actual values
are to be copied into RD_ARRAY

Parameter output Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
a_RD_ARRAY CANsync_RD_BMARRAY Output array for the actual values

of the CANsync slaves
si_RD_SL_NR1_RECEIVED SINT

-1, 0 to 31
Display of the slave number of the
CANsync slave from which actual
value message frame 1 was recei-
ved
240 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
Using this FB, the system transfers reference values (a_WR_VALUES_SEND) to the CANsync interface

module that are sent to the CANsync slaves by means of the reference value message frames a). In ad-

dition, the CANsync slaves request the actual value message frames and a) output the actual values (in
a_RD_ARRAY).

In each CANsync interval, the system sends reference value message frames 1 and 2 to the CANsync
slaves.

In each CANsync interval, CANsync slave number si_RD_SL_NR1_RECEIVE requests actual value
message frame 1; and in each CANsync interval, CANsync slave number si_RD_SL_NR2_RECEIVE
requests actual value message frame 2.

The CANsync slaves' request for the actual value message frames runs automatically as follows:

In each CANsync interval, the system automatically increments by one the slave number of the CANsync
slave (from which actual value message frames 1 and 2 are requested). This incrementation is carried
out up to si_MAX_SL_NR. After this, the system starts with the request for the CANsync slave with slave
number 0, etc. (si_RD_SL_NR1_RECEIVE and si_RD_SL_NR2_RECEIVE not then assigned).

Input/output _BASE:

At _BASE, you must connect a global variable of data type CANsync_MA_CTRL_BMSTRUCT. You
must assign this variable via declaration of global variables to the base address of the CANsync interface
module.

Example:

CANsync interface module 2 (node 2) on �mega Drive-Line II

_CANsync_CTRL_MA AT %MB3.200000 : CANsync_MA_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_MA is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_MA_CTRL_BMSTRUCT is the data type
%MB3.200000 is the base address of the CANsync 2 interface module

on the �mega Drive-Line II

Input/output a_RD_ARRAY (actual values 0 to 7 of CANsync slaves 0 to 31):

A variable of data type CANsync_RD_BMARRAY is connected at a_RD_ARRAY.

si_RD_SL_NR2_RECEIVED SINT
-1, 0 to 31

Display of the slave number of the
CANsync slave from which actual
value message frame 2 was
received

a) Assuming you carried out corresponding configuration for reference value message frames 1
and 2 using FB CANsync_PD_CFG_MA for actual value message frames 1 and 2 of each
CANsync slave using FB CANsync_PD_CFG_READ_MA.

Parameter output Data type Description
Control Engineering �mega Drive-Line II 241
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
Data type CANsync_RD_BMARRAY is a two-dimensional field of 32 (CANsync slaves) with 16 actual

values each a).

This means that data type CANsync_RD_BMARRAY is a field of 32 entries of data type
DINT_16_BMARRAY. Data type DINT_16_BMARRAY is a field of 16 entries of data type double integer:

DINT_16_BMARRAY : ARRAY [0..15] OF DINT;

CANsync_RD_BMARRAY : ARRAY [0..31] OF DINT_16_BMARRAY

Example:

a_Istwerte : CANsync_RD_BMARRAY;

Where:

a_Istwerte is the variable name with the data type short designati-
on "a" for ARRAY

CANsync_RD_BMARRAY is the data type

The system accesses the individual actual values according to this pattern:

Variable name[slave number of the CANsync slave][number of the actual value]

There is no period between the variable name and the square brackets or
between the square brackets themselves.

Example: The system writes (in structured text (ST)) variable di_Istwert_21_6 with actual value 6 of
the CANsync slave with slave number 21:

di_Istwert_21_6 := a_Istwerte[21][6];

Inputs a_WR_VALUES_SEND, si_WRC1_SEND and si_WRC2_SEND:

A variable of data type DINT_8_BMARRAY is connected at input a_WR_VALUES_SEND. Data type
DINT_8_BMARRAY is a field with 8 entries of data type double integer:

DINT_8_BMARRAY : ARRAY [0..7] OF DINT;

Example:

a_Sollwerte : DINT_8_BMARRAY;

Where:

a_Sollwerte is the variable name with the data type short designati-
on "a" for ARRAY

DINT_8_BMARRAY is the data type

The system then expects reference values 0 to 7 in field elements a_Sollwerte[0] to
a_Sollwerte[7], for example.

a) Currently, actual values 0 to 3 (actual value message frame 1) and actual values 4 to 7
(actual value message frame 2) are supported.

NOTE
242 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
At input si_WRC1_SEND, the system states when reference values 0 to 3 are valid. Reference value
message frame 1 can then be sent A value of 5 indicates that reference values 0 to 3 are valid, whereas
any other value indicates that reference values 0 to 3 are not valid.

At input si_WRC2_SEND, the system states when reference values 4 to 7 are valid. Reference value
message frame 2 can then be sent A value of 5 indicates that reference values 4 to 7 are valid, whereas
any other value indicates that reference values 4 to 7 are not valid.

In reference value message frame 1, the system sends reference values 0
to 3; and in reference value message frame 2, it sends reference values 4
to 7. Gaps in reference value numbers are permissible.

Inputs si_RD_SL_NR1_RECEIVE, si_RD_SL_NR2_RECEIVE and si_MAX_SL_NR:

At input si_RD_SL_NR1_RECEIVE, you state the slave number of the CANsync slave from which actual
value message frame 1 is requested.

For automatic requesting of the CANsync slaves' actual value message frame 1,
si_RD_SL_NR1_RECEIVE is not assigned (or set equal to -128) and the system states the highest slave
number at si_MAX_SL_NR.

At input si_RD_SL_NR2_RECEIVE, you state the slave number of the CANsync slave from which actual
value message frame 2 is requested.

For automatic requesting of the CANsync slaves' actual value message frame 2,
si_RD_SL_NR2_RECEIVE is not assigned (or set equal to -128) and the system states the highest slave
number at si_MAX_SL_NR.

In every CANsync interval, the system then increments by one the slave number of the CANsync slave
(from which actual value message frame 1 and/or 2 is/are requested automatically) until the number at
input si_MAX_SL_NR is reached.

After this, the system starts with polling for the CANsync slave with slave number 0, etc.

It is also possible to mix explicit specification and automatic incrementing for actual value message fra-
mes 1 and 2.

The highest slave number of a CANsync slave from which actual value message frames are requested
(input si_MAX_SL_NR) is also used for requirements data communication (control word, parameters,
upload/download).

If si_MAX_SL_NR = -1, the value remains unchanged on the CANsync interface module.

The default setting is si_MAX_SL_NR = -1, i.e. the value remains unchanged on the CANsync interface
module.

NOTE
Control Engineering �mega Drive-Line II 243
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
This input corresponds to input si_MAX_SL_NR on FB
CANsync_COMM_CONTROL_MA.
This means that you use input si_MAX_SL_NR on FB
CANsync_COMM_CONTROL_MA or input si_MAX_SL_NR on FB
CANsync_PD_COMM_MA to state the highest slave number of a CANsync
slave.
You must use only one of the two inputs!

Input x_COPY_RD_ARRAY:

At input x_COPY_TO_RD_ARRAY, the system indicates with TRUE that the received actual values are
entered in the two-dimensional field at a_RD_ARRAY.

If the system indicates FALSE at x_COPY_TO_RD_ARRAY or x_COPY_TO_RD_ARRAY is not assi-
gned, the received actual values are not entered in the two-dimensional field at a_RD_ARRAY.

Outputs si_RD_SL_NR1_RECEIVED, si_RD_SL_NR2_RECEIVED:

At output si_RD_SL_NR1_RECEIVED, the system displays the slave number of the CANsync slave
from which actual value message frame 1 was received in the last CANsync interval. If no actual value
message frame 1 was received in a CANsync interval, the system displays -128 at
si_RD_SL_NR1_RECEIVED.

At output si_RD_SL_NR2_RECEIVED, the system displays the slave number of the CANsync slave
from which actual value message frame 2 was received in the last CANsync interval. If no actual value
message frame 2 was received in a CANsync interval, the system displays -128 at
si_RD_SL_NR2_RECEIVED.

NOTE
244 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
7.3.20CANsync_PD_COMM_READ_MA

FB CANsync_PD_COMM_READ_MA is present for reasons of compatibili-
ty and you should not use it in new projects. The system uses FB
CANsync_PD_COMM_MA to output the actual values of all the CANsync
slaves to a_RD_BMARRAY.

Description

You can use this function block for CANsync to output in a CANsync master interface module the pro-
cess data actual values of a CANsync slave.

FB CANsync_PD_COMM_READ_MA uses library BM_TYPES_20bd00 or
above.

Using this FB, the system, outputs the actual values of a CANsync slave (a_RD_VALUES). The CAN-
sync slave's request for the actual value message frames must be made via FB
CANsync_PD_COMM_MA.

Using FB CANsync_PD_COMM_READ_MA is only reasonable if the actual values are not output at FB
CANsync_PD_COMM_MA, i.e. when FB CANsync_PD_COMM_MA, input x_COPY_TO_RD_ARRAY
= FALSE.

NOTE

NOTE

Parameter input Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
si_SL_NR SINT

0 to 31
Slave number of the CANsync
slaves from which actual values
are read

Parameter output Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
a_RD_VALUES DINT_8_BMARRAY Output array for actual values that

were received from the CANsync
slave

si_RD_SL_NR1_RECEIVED SINT Display that actual value message
frame 1 was received

si_RD_SL_NR2_RECEIVED SINT Display that actual value message
frame 2 was received
Control Engineering �mega Drive-Line II 245
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
Input/output _BASE:

At _BASE, you must connect a global variable of data type CANsync_MA_CTRL_BMSTRUCT. You
must assign this variable via declaration of global variables to the base address of the CANsync interface
module.

Example:

CANsync interface module 2 (node 2) on �mega Drive-Line II

_CANsync_CTRL_MA AT %MB3.200000 : CANsync_MA_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_MA is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_MA_CTRL_BMSTRUCT is the data type
%MB3.200000 is the base address of the CANsync 2 interface module

on the �mega Drive-Line II

Input si_SL_NR:

At input si_SL_NR, you state the slave number of the CANsync slave on the CANsync bus whose actual
values are to be output.

Input/output a_RD_VALUES (actual values 0 to 7 of CANsync slave si_SL_NR):

A variable of data type DINT_8_BMARRAY is connected at a_RD_VALUES. Data type
DINT_8_BMARRAY is a field of 8 entries of data type double integer:

DINT_8_BMARRAY : ARRAY [0..7] OF DINT;

Example:

a_Istwerte_3 : DINT_8_BMARRAY;

Where:

a_Istwerte_3 is the variable name with the data type short designati-
on "a" for ARRAY

DINT_8_BMARRAY is the data type

The system accesses the individual actual values according to this pattern:

Variable name[number of the actual value]

Example: The system writes (in structured text (ST)) variable di_Istwert_3_6 with actual value
6 of the CANsync slave with slave number 3:

di_Istwert_3_6 := a_Istwerte_3[6];

Currently, actual values 0 to 3 (actual value message frame 1) and actual values 4 to 7 (actual value
message frame 2) are supported.

Outputs si_RD_SL_NR1_RECEIVED, si_RD_SL_NR2_RECEIVED:

At output si_RD_SL_NR1_RECEIVED, the system indicates with 1 whether actual value message frame
1 was received. If actual value message frame 1 was not received, si_RD_SL_NR1_RECEIVED = 0.
The new actual values 0 to 3 are only output at a_RD_VALUES when actual value message frame 1
was received.

At output si_RD_SL_NR2_RECEIVED, the system indicates with 2 whether actual value message frame
2 was received. If actual value message frame 2 was not received, si_RD_SL_NR2_RECEIVED = 0.
The new actual values 4 to 7 are only output at a_RD_VALUES when actual value message frame 2
was received.
246 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
7.3.21CANsync_PD_COMM_READ_SL

FB CANsync_PD_COMM_READ_SL is present for reasons of compatibility
and you should not use it in new projects. The system uses FB
CANsync_PD_COMM_MA to output the monitored actual values to
a_RD_BMARRAY of the other CANsync slaves.

Description

You can use this function block for CANsync to output in a CANsync slave interface module the process
data actual values of a CANsync slave.

FB CANsync_PD_COMM_READ_SL uses library BM_TYPES_20bd00 or
above.

Using this FB, the system, outputs the actual values that were monitored of another CANsync slave
(a_RD_VALUES). The CANsync master must use FB CANsync_PD_COMM_MA to request the actual
value message frames of the other CANsync slave.

Using FB CANsync_PD_COMM_READ_SL is only reasonable if the actual values are not output at FB
CANsync_PD_COMM_SL, i.e. when FB CANsync_PD_COMM_SL, input x_COPY_TO_RD_ARRAY =
FALSE.

NOTE

NOTE

Parameter input Data type Description
_BASE CANsync_SL_CTRL_BMSTRUCT Operating data for the CANsync

interface module
si_SL_NR SINT

0 to 31
Slave number of the CANsync
slaves from which actual values are
monitored

Parameter output Data type Description
_BASE CANsync_SL_CTRL_BMSTRUCT Operating data for the CANsync

interface module
a_RD_VALUES DINT_8_BMARRAY Output array for actual values that

were received from the CANsync
slave

si_RD_SL_NR1_RECEIVED SINT Display that actual value message
frame 1 was received

si_RD_SL_NR2_RECEIVED SINT Display that actual value message
frame 2 was received
Control Engineering �mega Drive-Line II 247
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
Input/output _BASE:

A global variable of data type CANsync_SL_CTRL_BMSTRUCT must be connected at _BASE. You
must assign this variable via declaration of global variables to the base address of the CAN interface
module.

Example:

CANsync interface module 1 (node 1) on �mega Drive-Line II

_CANsync_CTRL_SL AT %MB3.100000 : CANsync_SL_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_ SL is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_SL_CTRL_BMSTRUCT is the data type
%MB3.100000 is the base address of the CANsync 1 interface module

on the �mega Drive-Line II

Input si_SL_NR:

At input si_SL_NR, you state the slave number of the CANsync slave on the CANsync bus whose mo-
nitored actual values are to be output.

Input/output a_RD_VALUES (actual values 0 to 7 of CANsync slave si_SL_NR):

A variable of data type DINT_8_BMARRAY is connected at a_RD_VALUES. Data type
DINT_8_BMARRAY is a field of 8 entries of data type double integer:

DINT_8_BMARRAY : ARRAY [0..7] OF DINT;

Example:

a_Istwerte_3 : DINT_8_BMARRAY;

Where:

a_Istwerte_3 is the variable name with the data type short designati-
on "a" for ARRAY

DINT_8_BMARRAY is the data type

The system accesses the individual actual values according to this pattern:

Variable name[number of the actual value]

Example: The system writes (in structured text (ST)) variable di_Istwert_22_6 with actual value
6 of the CANsync slave with slave number 22:

di_Istwert_22_6 := a_Istwerte_22[6];

Currently, actual values 0 to 3 (actual value message frame 1) and actual values 4 to 7 (actual value
message frame 2) are supported.

Outputs si_RD_SL_NR1_RECEIVED, si_RD_SL_NR2_RECEIVED:

At output si_RD_SL_NR1_RECEIVED, the system indicates with 1 whether actual value message frame
1 was received. If actual value message frame 1 was not received, si_RD_SL_NR1_RECEIVED = 0.
The new actual values 0 to 3 are only output at a_RD_VALUES when actual value message frame 1
was received.

At output si_RD_SL_NR2_RECEIVED, the system indicates with 2 whether actual value message frame
2 was received. If actual value message frame 2 was not received, si_RD_SL_NR2_RECEIVED = 0.
The new actual values 4 to 7 are only output at a_RD_VALUES when actual value message frame 2
was received.
248 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
7.3.22CANsync_PD_COMM_SL

Description

You can use this function block for CANsync to carry out process data communication (of reference va-
lues and actual values) of the CANsync slave interface module.

FB CANsync_PD_COMM_SL uses library BM_TYPES_20bd00 or above.

NOTE

Parameter input Data type Description
_BASE CANsync_SL_CTRL_BMSTRUCT Operating data for the CANsync

interface module
a_RD_ARRAY CANsync_RD_BMARRAY Output array for the actual values

of the CANsync slaves
a_RD_VALUES_SEND DINT_8_BMARRAY Actual values that are sent to the

CANsync master
si_RDC1_SEND SINT

5
Command for actual value
message frame 1 to be sent

si_RDC2_SEND SINT
5

Command for actual value
message frame 2 to be sent

x_COPY_TO_RD_ARRAY BOOL Indication of whether received
actual values are to be copied into
RD_ARRAY

Parameter output Data type Description
_BASE CANsync_SL_CTRL_BMSTRUCT Operating data for the CANsync

interface module
a_RD_ARRAY CANsync_RD_BMARRAY Output array for the actual values

of the CANsync slaves
a_WR_VALUES_RECEIVED DINT_8_BMARRAY Reference values that were

received by the CANsync master
si_WRC1_RECEIVED SINT Display that reference value

message frame 1 was received
si_WRC2_RECEIVED SINT Display that reference value

message frame 2 was received
si_RD_SL_NR1_RECEIVED SINT Display of the slave number of the

CANsync slave from which actual
value message frame 1 was
received

si_RD_SL_NR2_RECEIVED SINT Display of the slave number of the
CANsync slave from which actual
value message frame 2 was
received
Control Engineering �mega Drive-Line II 249
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
Using this FB, the system transfers actual values (a_RD_VALUES_SEND) to the CANsync interface

module that are sent to the CANsync master by means of the actual value message frames a). In addi-

tion, the other CANsync slaves on the CANsync bus monitor the actual value message frames a) and
output the actual values (in a_RD_ARRAY).

In each CANsync interval, the system sends reference value message frames 1 and 2 to the CANsync
slaves and this FB outputs them to a_WR_VALUES_RECEIVED.

In each CANsync interval, the CANsync master requests actual value message frame 1 from a CANsync
slave. The system only sends actual value message frame 1 when the CANsync master requests it from
this CANsync slave.

In each CANsync interval, the CANsync master requests actual value message frame 2 from a CANsync
slave. The system only sends actual value message frame 2 when the CANsync master requests it from
this CANsync slave.

This FB can monitor and evaluate actual value message frames 1 and 2 of the other CANsync slaves
when the CANsync master requests these actual value message frames.

A CANsync slave can evaluate the actual value message frames of other
CANsync slaves but not request them!

Input/output _BASE:

At _BASE, you must connect a global variable of data type CANsync_SL_CTRL_BMSTRUCT. You must
assign this variable via declaration of global variables to the base address of the CANsync interface mo-
dule.

Example:

CANsync interface module 1 (node 1) on �mega Drive-Line II

_CANsync_CTRL_SL AT %MB3.100000 : CANsync_SL_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_ SL is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_SL_CTRL_BMSTRUCT is the data type
%MB3.100000 is the base address of the CANsync 1 interface module

on the �mega Drive-Line II

Input/output a_RD_ARRAY (actual values 0 to 7 of [the other] CANsync slaves 0 to 31):

A variable of data type CANsync_RD_BMARRAY is connected at a_RD_ARRAY.

a) Assuming you carried out corresponding configuration for reference value message frames 1
and 2 using FB CANsync_PD_CFG_SL for actual value message frames 1 and 2 of each
other CANsync slave (except this one) using FB CANsync_PD_CFG_READ_SL .

NOTE
250 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
Data type CANsync_RD_BMARRAY is a two-dimensional field of 32 (CANsync slaves) with 16 actual

values each a).

This means that data type CANsync_RD_BMARRAY is a field of 32 entries of data type
DINT_16_BMARRAY. Data type DINT_16_BMARRAY is a field of 16 entries of data type double integer:

DINT_16_BMARRAY : ARRAY [0..15] OF DINT;

CANsync_RD_BMARAY : ARRAY [0..31] OF DINT_16_BMARRAY

Example:

a_Istwerte : CANsync_RD_BMARRAY;

Where:

a_Istwerte is the variable name with the data type short designati-
on "a" for ARRAY

CANsync_RD_BMARRAY is the data type

The system accesses the individual actual values according to this pattern:

Variable name[slave number of the CANsync slave][number of the actual value]

There is no period between the variable name and the square brackets or
between the square brackets themselves.

Example: The system writes (in structured text (ST)) variable di_Istwert_21_6 with actual value
6 of the CANsync slave with slave number 21:

di_Istwert_21_6 := a_Istwerte[21][6];

The system enters the monitored actual values of the other CANsync slaves
in a_RD_ARRAY, but not the actual values of this CANsync slave.

Inputs a_RD_VALUES_SEND, si_RDC1_SEND and si_RDC2_SEND:

A variable of data type DINT_8_BMARRAY is connected at input a_RD_VALUES_SEND. Data type
DINT_8_BMARRAY is a field with 8 entries of data type double integer:

DINT_8_BMARRAY : ARRAY [0..7] OF DINT;

a) Currently, actual values 0 to 3 (actual value message frame 1) and actual values 4 to 7
(actual value message frame 2) are supported.

NOTE

NOTE
Control Engineering �mega Drive-Line II 251
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
Example:

a_Istwerte_Senden : DINT_8_BMARRAY;

Where:

a_Istwerte_Senden is the variable name with the data type short designati-
on "a" for ARRAY

DINT_8_BMARRAY is the data type

The system enters actual values 0 to 7 in entries 0 to 7 (e.g. a_Istwerte_Senden[0] to
a_Istwerte_Senden[7]).

At input si_RDC1_SEND, the system states when actual values 0 to 3 are valid. The system can then
send actual value message frame 1, assuming that the CANsync master requests it. A value of 5 indi-
cates that actual values 0 to 3 are valid, whereas any other value indicates that actual values 0 to 3 are
not valid.

At input si_RDC2_SEND, the system states when reference values 4 to 7 are valid. The system can then
send actual value message frame 2, assuming that the CANsync master requests it. A value of 5 indi-
cates that actual values 4 to 7 are valid, whereas any other value indicates that actual values 4 to 7 are
not valid.

In actual value message frame 1, the system sends actual values 0 to 3; and
in actual value message frame 2, it sends actual values 4 to 7. Gaps in ac-
tual value numbers are permissible.

Input x_COPY_RD_ARRAY:

At input x_COPY_TO_RD_ARRAY, the system indicates with TRUE that the monitored actual values
are entered in the two-dimensional field at a_RD_ARRAY.

If the system indicates FALSE at x_COPY_TO_RD_ARRAY or x_COPY_TO_RD_ARRAY is not assi-
gned, the monitored actual values are not entered in the two-dimensional field at a_RD_ARRAY.

Outputs a_WR_VALUES_RECEIVED, si_WRC1_RECEIVED, si_WRC2_RECEIVED:

A variable of data type DINT_8_BMARRAY is connected at output a_WR_VALUES_RECEIVED. Data
type DINT_8_BMARRAY is a field with 8 entries of data type double integer:

DINT_8_BMARRAY : ARRAY [0..7] OF DINT;

Example:

a_Sollwerte : DINT_8_BMARRAY;

Where:

a_Sollwerte is the variable name with the data type short designati-
on "a" for ARRAY

DINT_8_BMARRAY is the data type

The system then enters reference values 0 to 7 that the CANsync master received in field elements
a_Sollwerte[0] to a_Sollwerte[7], for example. The reference values can be of word or

double-word format.

NOTE
252 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
At output si_WRC1_RECEIVED, the system indicates with 1 whether reference value message frame 1
was received. If reference value message frame 1 was not received, si_WRC1_RECEIVED = 0. The
new reference values 0 to 3 are only output at a_WR_VALUES_RECEIVED when reference value mes-
sage frame 1 was received.

At output si_WRC2_RECEIVED, the system indicates with 2 whether reference value message frame 2
was received. If reference value message frame 2 was not received, si_WRC2_RECEIVED = 0. The
new reference values 4 to 7 are only output at a_WR_VALUES_RECEIVED when reference value mes-
sage frame 2 was received.

In reference value message frame 1, the system receives reference values
0 to 3; and in reference value message frame 2, it receives reference values
4 to 7. Gaps in reference value numbers are permissible.

Outputs si_RD_SL_NR1_RECEIVED, si_RD_SL_NR2_RECEIVED:

At output si_RD_SL_NR1_RECEIVED, the system displays the slave number of the CANsync slave
from which actual value message frame 1 was monitored in the last CANsync interval. If no actual value
message frame 1 was monitored in a CANsync interval, the system displays -128 at
si_RD_SL_NR1_RECEIVED.

At output si_RD_SL_NR2_RECEIVED, the system displays the slave number of the CANsync slave
which monitored actual value message frame 2 in the last CANsync interval. If no actual value message
frame 2 was monitored in a CANsync interval, the system displays -128 at si_RD_SL_NR2_RECEIVED.

NOTE
Control Engineering �mega Drive-Line II 253
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
7.3.23CANsync_SL_TYP_INIT

Description

You can use this function block for CANsync to state the state the slave types for CANsync initialization.

This FB is used together with FB CANsync_INIT.

Using this FB, the system outputs the slave types of the CANsync slaves on the CANsync bus. The data
is entered in a field (output a_SL_TYP). This field is connected at input a_SL_TYP of the FB
CANsync_INIT.

Inputs us_SL_TYP0 to us_SL_TYP31:

For the CANsync slave with slave number 0, you state the slave type at input us_SL_TYP0.

us_SL_TYP0 = 0 means that no CANsync slave is present with slave number 0

us_SL_TYP0 = 1 means that a CANsync slave is present with slave number 0

For the CANsync slave with slave number 1, you state the slave type at input us_SL_TYP1.

us_SL_TYP1 = 0 means that no CANsync slave is present with slave number 1

us_SL_TYP1 = 1 means that a CANsync slave is present with slave number 1

etc.

For the CANsync slave with slave number 31, you state the slave type at input us_SL_TYP31.

us_SL_TYP31 = 0 means that no CANsync slave is present with slave number 31

us_SL_TYP31 = 1 means that a CANsync slave is present with slave number 31

NOTE

Parameter input Data type Description
us_SL_TYP0 USINT Slave type 0
us_SL_TYP1 USINT Slave type 1
us_SL_TYP2 USINT Slave type 2
...
us_SL_TYP31 USINT Slave type 31

Parameter output Data type Description
a_SL_TYP BYTE_32_BMARRAY Initialization data of slave types
254 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
Meanings of the slave types:

Output a_SL_TYP:

A variable of data type BYTE_32_BMARRAY is connected at output a_SL_TYP. Data type
BYTE_32_BMARRAY is a field of 32 entries of data type byte:

BYTE_32_BMARRAY : ARRAY [0..31] OF BYTE;

Example:

a_Slave_Typen : BYTE_32_BMARRAY;

Where:

a_Slave_Typen is the variable name with the data type short designati-
on "a" for ARRAY

BYTE_32_BMARRAY is the data type

In the individual entries of the field is located the slave type of the CANsync slave on the CANsync bus.
In entry [0], there is the slave type of the CANsync slave with slave number 0; in entry [1] there is the
slave type of the CANsync slave with slave number 1, etc.

A 0 in entry [x] means that there is no CANsync slave with slave number x on the CANsync bus.

A value ≠ 0 in entry [x] means that there is one CANsync slave with slave number x on the CANsync bus.

This variable is connected at input a_SL_TYP of the FB CANsync_INIT.

Slave type Meaning

0 No CANsync slave with slave number x

1 CANsync slave interface module of an �mega Drive-Line II with slave
number x, controller with CANsync-Interface with slave number x present

2 - 255 Reserved

NOTE
Control Engineering �mega Drive-Line II 255
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
7.3.24CANsync_UPDOWNLOAD_MA

Description

You can use this function block for CANsync to carry out an upload or a download in the Block 1 area
(see description of CANsync). It is specially designed for use with FB CANsync_UPDOWNLOAD_SL in
the CANsync slave.

FB CANsync_UPDOWNLOAD_MA uses library BM_TYPES_20bd00 or
above.

NOTE

Parameter input Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
a_DOWNLOAD CANsync_UPDOWN_BMARRAY Download values
a_UPLOAD CANsync_UPDOWN_BMARRAY Upload values
si_SL_NR SINT

0 to 31
Slave number of the CANsync slave
to which the upload or download job
is addressed

x_UPDOWN BOOL Upload or download
u_LENGTH UINT

1 to 2048
Length of the up down block

us_MAX_NR_OS_COMM USINT Maximum number of
communications attempts

t_TIME TIME Monitoring time
x_EN BOOL Enable
x_RESET BOOL Reset:

Parameter output Data type Description
_BASE CANsync_MA_CTRL_BMSTRUCT Operating data for the CANsync

interface module
a_DOWNLOAD CANsync_UPDOWN_BMARRAY Download values
a_UPLOAD CANsync_UPDOWN_BMARRAY Upload values
x_BUSY BOOL Communication is active
w_ERR_SL WORD Error word (CANsync slave ->

CANsync master)
x_ERR_SL BOOL Error bit (group error bit of

w_ERRSL)
b_ERR BYTE Error byte
x_ERR BOOL Error bit (group error bit of b_ERR)
x_OK BOOL OK bit
256 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
FB CANsync_UPDOWNLOAD_MA carries out an upload or a download in the block 1 area. FB
CANsync_UPDOWNLOAD_MA is specially designed for use with FB CANsync_UPDOWNLOAD_SL in
the CANsync slave.

FB CANsync_UPDOWN_MA transfers download data to the CANsync slave with slave number
si_SL_NR.

The download job consists of u_LENGTH values from field a_DOWNLOAD.

(FB CANsync_UPDOWN_MA carries out a download job to the CANsync slave in several download
message frame blocks. The system sends per download message frame block a maximum of 75 values
from field a_DOWNLOAD to the CANsync slave).

The CANsync slave processes the download job and returns the result of communication.

FB CANsync_UPDOWN_MA requests upload data from the CANsync slave with slave number
si_SL_NR.

The system requests u_LENGTH values from the CANsync slave.

(FB CANsync_UPDOWN_MA carries out an upload job to the CANsync slave in several upload messa-
ge frame blocks. The system receives per upload message frame block a maximum of 75 values from
the CANsync slave).

The CANsync slave processes the upload job and returns the result of communication. The values are
output at a_UPLOAD.

Input/output _BASE:

At _BASE, you must connect a global variable of data type CANsync_MA_CTRL_BMSTRUCT. You
must assign this variable via declaration of global variables to the base address of the CANsync interface
module.

Example:

CANsync interface module 2 (node 2) on �mega Drive-Line II

_CANsync_CTRL_MA AT %MB3.200000 : CANsync_MA_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_MA is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_MA_CTRL_BMSTRUCT is the data type
%MB3.200000 is the base address of the CANsync 2 interface module

on the �mega Drive-Line II

Input/output a_DOWNLOAD:

A variable of data type CANsync_UPDOWN_BMARRAY is connected at a_DOWNLOAD. Data type
CANsync_UPDOWN_BMARRAY is a field of 2048 entries of data type double integer:

CANsync_UPDOWN_BMARRAY : ARRAY [0..2047] OF DINT;

Example:

a_Downloadwerte : CANsync_UPDOWN_BMARRAY;

Where:

a_Downloadwerte is the variable name with the data type short designati-
on "a" for ARRAY

CANsync_UPDOWN_BMARRAY is the data type

The system then expects the data for the download in field elements a_Downloadwerte[0] to
a_Downloadwerte[2047], for example.
Control Engineering �mega Drive-Line II 257
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
Input/output a_UPLOAD:

A variable of data type CANsync_UPDOWN_BMARRAY is connected at a_DOWNLOAD. Data type
CANsync_UPDOWN_BMARRAY is a field of 2048 entries of data type double integer:

CANsync_UPDOWN_BMARRAY : ARRAY [0..2047] OF DINT;

Example:

a_Uploadwerte : CANsync_UPDOWN_BMARRAY;

Where:

a_Uploadwerte is the variable name with the data type short designati-
on "a" for ARRAY

CANsync_UPDOWN_BMARRAY is the data type

At uploading, the system then outputs the data in field elements a_Uploadwerte[0] to
a_Uploadwerte[2047], for example.

Input si_SL_NR:

At input si_SL_NR, you state the slave number of the CANsync slave on the CANsync bus from which
the system is to upload data or to which it is to download it.

The upload/download to/from this CANsync slave must be enabled via FB
CANsync_COMM_CONTROL_MA (see description of FB
CANsync_COMM_CONTROL_MA).

Input x_UPDOWN:

At input x_UPDOWN, you set an upload job with x_UPDOWN = FALSE; and with x_UPDOWN = TRUE,
you set a download job.

Input u_LENGTH:

At input u_LENGTH, you state the length of the upload/download area to be transferred. The system
transfers a maximum of 2048 32-bit values. If you enter a 0 at u_LENGTH, the system sets the bit TRUE
in error byte b_ERR.

The system transfers the data block-by-block in message frame blocks. One message frame block is 75
32-bit values in size. This means that with an upload or download job of more than 75 32-bit values, the
system needs to send correspondingly more message frame blocks.

Input us_MAX_NR_OF_COMM:

At input us_MAX_NR_OF_COMM, you can specify how often a block of the upload/download area is to
be repeated if the following cases apply: a) the monitoring time (of the CANsync master) has expired;
and b) the CANsync slave did not report an error (the default setting is us_MAX_NR_OF_COMM = 1).
The system does not issue the timeout message (see input t_TIME) until time
us_MAX_NR_OF_COMM * t_TIME has expired and up to this instant no answer from the CANsync sla-
ve is present.

NOTE
258 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
Input t_TIME:

You state the monitoring time at input t_TIME. If the download job or the upload job is not completely
processed within the monitoring time, the system sets bit 2 in the error byte (see also input
us_MAX_NR_OF_COMM).

Incomplete processing of an upload or download job can be due to the command channel being busy
with higher-priority messages (broadcast commands, send control word jobs, parameter jobs; See “Re-
quirements Data” on page 124.)

Input x_EN:

With x_EN = TRUE, the system enables FB CANsync_UPDOWNLOAD_MA, i.e. upload or download
jobs can be sent to the CANsync slave.

If x_EN is set to FALSE before the upload or download job is completed, it is assumed that the job was
cancelled deliberately. You must then reset FB CANsync_UPDOWNLOAD_MA with x_RESET = TRUE
to start a new upload or download job via the specified length (input u_LENGTH).

Input x_RESET:

You can use x_RESET = TRUE to reset FB CANsync_UPDOWNLOAD_MA. This is necessary after
cancelling the upload or download job (using x_EN = FALSE) or following an error message, for examp-
le. After this, you must set x_RESET back to FALSE.

Output x_BUSY:

Output x_BUSY indicates with TRUE that FB CANsync_UPDOWNLOAD_MA is processing a job.

Output x_OK:

Output x_OK indicates with TRUE that the upload or download job has been carried out correctly. Output
x_OK is FALSE if the system did not execute an upload or download job or it was not executed correctly.

Outputs x_ERR_SL, w_ERR_SL:

If an error occurs in the CANsync slave while the upload or download job is being carried out, the system
sets error bit x_ERR_SL to TRUE and outputs error word w_ERR_SL (see below). In this case output
x_OK stays FALSE.

Outputs x_ERR, b_ERR:

If an error occurs while the upload or download job is being carried out, the system sets error bit x_ERR
to TRUE and outputs error byte b_ERR (see below). In this case output x_OK stays FALSE.

Error byte b_ERR:

Bit No. Meaning

0 Timeout

1 Length of the upload/download area to be transferred is equal to 0 (input
u_LENGTH)

2 to 7 Reserved
Control Engineering �mega Drive-Line II 259
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
Error word w_ERR_SL:

w_ERR_SL Meaning

16#0000 Reserved

16#0001 CANsync slave acknowledges wrong block number

16#0002 Entered transfer block length > 300 bytes / 75 doublewords

16#0003 to
16#00FF

Reserved

16#0100 CANsync slave expects transfer block with the number that is entered in
the counter

16#0101 CANsync slave expects transfer block end

16#0102 CANsync slave does not yet expect transfer block end

16#0103 CANsync slave cancels job

16#0104 Job not possible

16#0105 Base address not allowed

16#0106 Reserved

16#0107 Upload/download area CANsync master > Upload/download area
CANsync slave

16#0108 Message frame mode error (mode not allowed at this stage)

16#0109 to
16#FFFF

Reserved
260 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
7.3.25CANsync_UPDOWNLOAD_SL

Description

You can use this function block for CANsync to carry out an upload or a download in the Block 1 area
(see description of CANsync) depending on the job from the CANsync master. It is specially designed
for use with FB CANsync_UPDOWNLOAD_MA in the CANsync master.

FB CANsync_UPDOWNLOAD_SL uses library BM_TYPES_20bd00 or
above.

FB CANsync_UPDOWNLOAD_SL carries out a download job or an upload job of the to the CANsync
master. The system outputs download values (a_DOWNLOAD) and sends upload values (a_UPLOAD)
to the CANsync master.

The system transfers the data in several message frame blocks. A maximum of 75 32-bit values are
transferred per message frame block.

FB CANsync_UPDOWNLOAD_SL is specially designed for use with FB
CANsync_UPDOWNLOAD_MA in the CANsync master.

NOTE

Parameter input Data type Description
_BASE CANsync_SL_CTRL_BMSTRUCT Operating data for the CANsync

interface module
a_DOWNLOAD CANsync_UPDOWN_BMARRAY Download values
a_UPLOAD CANsync_UPDOWN_BMARRAY Upload values
t_TIME TIME Monitoring time
x_EN BOOL Enable
x_RESET BOOL Reset:

Parameter output Data type Description
_BASE CANsync_SL_CTRL_BMSTRUCT Operating data for the CANsync

interface module
a_DOWNLOAD CANsync_UPDOWN_BMARRAY Download values
a_UPLOAD CANsync_UPDOWN_BMARRAY Upload values
x_UPDOWN BOOL Display of upload or download
x_ORDER_ACTIV BOOL Display of pending job
u_LENGTH UINT Length of the transferred block
x_BUSY BOOL Display of FB is active
w_ERR WORD Error word
x_ERR BOOL Error bit
x_OK BOOL OK bit
Control Engineering �mega Drive-Line II 261
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
Input/output _BASE:

At _BASE, you must connect a global variable of data type CANsync_SL_CTRL_BMSTRUCT. You must
assign this variable via declaration of global variables to the base address of the CANsync interface mo-
dule.

Example:

CANsync interface module 1 (node 1) on �mega Drive-Line II

_CANsync_CTRL_SL AT %MB3.100000 : CANsync_SL_CTRL_BMSTRUCT;

Where:

CANsync_CTRL_ SL is the variable name with the data type short designati-
on "_" for STRUCT

CANsync_SL_CTRL_BMSTRUCT is the data type
%MB3.100000 is the base address of the CANsync 1 interface module

on the �mega Drive-Line II

Input/output a_DOWNLOAD:

A variable of data type CANsync_UPDOWN_BMARRAY is connected at a_DOWNLOAD. Data type
CANsync_UPDOWN_BMARRAY is a field of 2048 entries of data type double integer:

CANsync_UPDOWN_BMARRAY : ARRAY [0..2047] OF DINT;

Example:

a_Downloadwerte : CANsync_UPDOWN_BMARRAY;

Where:

a_Downloadwerte is the variable name with the data type short designati-
on "a" for ARRAY

CANsync_UPDOWN_BMARRAY is the data type

At downloading, the system then outputs the data in field elements a_Downloadwerte[0] to
a_Downloadwerte[2047], for example.

Input/output a_UPLOAD:

A variable of data type CANsync_UPDOWN_BMARRAY is connected at a_DOWNLOAD. Data type
CANsync_UPDOWN_BMARRAY is a field of 2048 entries of data type double integer:

CANsync_UPDOWN_BMARRAY : ARRAY [0..2047] OF DINT;

Example:

a_Uploadwerte : CANsync_UPDOWN_BMARRAY;

Where:

a_Uploadwerte is the variable name with the data type short designati-
on "a" for ARRAY

CANsync_UPDOWN_BMARRAY is the data type

The system then expects the data for the upload in field elements a_Uploadwerte[0] to
a_Uploadwerte[2047], for example.

Input t_TIME:

You state the monitoring time at input t_TIME. If the download job or the upload job is not completely
processed within the monitoring time, the system sets bit 0 in the error word. If input t_TIME is not assi-
gned, this yields a preset monitoring time of 30 s.
262 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

CANsync Function Blocks
Incomplete processing of an upload or download job can be due to the command channel being busy
with higher-priority messages (broadcast commands, send control word jobs, parameter jobs; See “Re-
quirements Data” on page 124.

Input x_EN:

With x_EN = TRUE, the system enables FB CANsync_UPDOWNLOAD_SL, i.e. upload or download
jobs can be processed.

If x_EN is set to FALSE before the upload or download job is completed, it is assumed that it was can-
celled deliberately. You must then reset FB CANsync_UPDOWNLOAD_SL with x_RESET = TRUE to
be able to carry out a new upload or download job.

Input x_RESET:

You can use x_RESET = TRUE to reset FB CANsync_UPDOWNLOAD_SL. This is necessary after can-
celling the upload or download job (using x_EN = FALSE) or following an error message, for example.
After this, you must set x_RESET back to FALSE.

Outputs x_UPDOWN, x_ORDER_ACTIV:

Output x_ORDER_ACTIV indicates with TRUE that a job is present. Output x_UPDOWN displays the
type of job. In the case of an upload job, x_UPDOWN = FALSE; with a download job, x_UPDOWN =
TRUE.

Output u_LENGTH:

Output u_LENGTH displays the number of 32-bit values of the transferred message frame block. One
message frame block is a maximum of 75 32-bit values in size. In the case of an upload or download job
that is larger than 75 32-bit values, the system transfers correspondingly more message frame blocks
and displays at u_LENGTH the number of 32-bit values of the currently transferred message frame
block.

Output x_BUSY:

Output x_BUSY indicates with TRUE that FB CANsync_UPDOWNLOAD_SL is processing an upload or
download job.

Output x_OK:

Output x_OK indicates with TRUE that the upload or download job has been carried out correctly. Output
x_OK is FALSE if the system did not execute an upload or download job or it was not executed correctly.

Outputs x_ERR, w_ERR:

If an error occurs, the system sets error bit x_ERR to TRUE and outputs error word b_ERR. In this case
output x_OK stays FALSE.

Error word w_ERR:

Bit No. Meaning
0 Timeout

1 to 15 Reserved
Control Engineering �mega Drive-Line II 263
Baumüller Nürnber g GmbH 5.00005.02

CANsync Function Blocks
264 Control Engineering �mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

Index

0

2

6
4

3

1

7
0
8

8 INDEX

Numerics

25-pin PC connection 21
9-pin PC connection 21

A

Acceptance Code 143, 168
Acceptance Mask 143, 168
Action command 132

Receiving ... 182
Actual value channel 153, 181

Using 176, 181
Actual value message frame .. 131, 154, 182
Actual value request 148
Actual values of other CANsync slaves

Receiving ... 177
Appropriate Use .. 8

B

BAPS
process data communication 57

BAPS cyclical communication 82
BAPS function blocks

Overview .. 81
BAPS interface

Initializing ... 82
Process data communication 95, 100,

107
Read or write requirements data 113
Read parameters 89
Write parameters 92

BAPS_CTRL_BMSTRUCT 56
base address .. 56
Basic functionality 49
Baud rate 143, 168
Block diagram

Drive-Line II .. 11
Ethernet ... 12

BM_TYPES_20bd00 41, 48
Board function ... 43
Broadcast command 157

receive ... 196
send 190, 192, 194

C

Cable
for CAN .. 23
for Ethernet ... 24

CAM_DLII_20bd00 42, 49
CAN_CTRL_BMSTRUCT 57
CAN_DLII_20bd00 41
CAN_INIT_BMSTRUCT 57
CANsync

Initialization .. 126, 139, 142, 165, 168
Mapping ... 12
Process data communication ... 119, 123,

127
Requirements data communication 124
terminator ... 2

CANsync bus length 119
CANsync cycle time 119
CANsync interval 119
CANsync nodes .. 17
CANsync status 142, 167
CANsync synchronization signal 117
CANsync_DLII_20bd00 42
CANsync_INIT_BMSTRUCT 57
CANsync_MA_CTRL_BMSTRUCT 57
CANsync_SL_CTRL_BMSTRUCT 57
Carry out an upload/download 256, 261
Clustering 116, 12
Cold boot ... 3
Command channel 132
Communication via Ethernet 30, 78
Communication via RS232 29
Communications source 28
Configuration

Command channel 155
Reference value message frame 145

Configuration of Drive-Line II 27
Configuration registers 155
Configure actual value message frames .. 229,

232
Configure command channel 198
Configure reference value message frames

226
Connecting cable for RS485 22
Control dialog for resources 32
Control register 148
Control word

receive ... 20
Control word command 158

send .. 20
Cyclical operation 139, 165

D

Danger Information 7
Data area .. 28, 3
Data format .. 13
Data types .. 4
Control Engenieering ����mega Drive-Line II 265
Baumüller Nürnber g GmbH 5.00005.02

Index

9
0

4

4
4

4

3
3

0
5

2
3

4

0

6

Detect parameter job 219
Diagnostics

Ethernet ... 57
Directory path for libraries 42
Displays ... 13
Documentation worksheets 28
Download ... 135

End .. 137
Job .. 161

Download command
Receiving ... 184

Download procedure 137
Drive functionality 9
Drive-Line II

firmware ... 42

E

Ethernet
block diagram 12
pin assignment 19

ETHERNET_CONFIG_BMSTRUCT 57
ETHERNET_DIAGNOSE_BMSTRUCT 57
Event task .. 39
Examples of configuration 57

F

FB
Carry out an upload/download .. 256, 261
Configure actual value message frames

229, 232
Configure command channel 198
Configure reference value message frames

226
Detect parameter job 219
Initialize CANsync interface module ... 205
Process data communication 240, 249
Receive broadcast command 196
Receive control word 203
Request parameter value from slave .. 216
Send broadcast command 190, 192, 194
Send control word command 201
Send parameter value to slave 223
Set operating mode 210, 213
State slave types for CANsync initialization

254
FB INTR_SET .. 43
FB OPT_INIT 53, 55
FB TIME_MEASURE_END 43
FB TIME_MEASURE_START 43
Firmware library .. 41
Flags

non retain ... 37
retain ... 37

Function block .. 42

Function block LED 47
Function blocks CANsync

overview ... 18
Functionality .. 1

G

Global variable work sheets 28

H

Hardware address, mapping 56
Hot boot .. 3

I

I/O configuration .. 28
IEI_DLII_20bd00 41
Information

project .. 3
Initialization ... 14
initialization message frame 135
Initialization sequence 169
Initialization task .. 55
Initialize CANsync interface module 205
Interrupt level 39, 4
Interrupt source ... 52
INTR_SET .. 4
IP address .. 7

conditions for setting 71
mwt.ini .. 3
preset ... 7
setting options for 73

IP address numbering
automatic .. 7

IP mask .. 7
conditions for setting 71

L

LED display ... 1

M

Mapping .. 12
Mapping of the hardware addresses 56
Master

Send instant 129

N

New project ... 2
266 Control Engenieering ����mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

Index

4

8
9

7
7
5
6

0
4
2
2
7

9

9

3

5
6
1

4

Non retain flags ... 37

O

Operator controls 13
OPT_INIT 52, 53, 55
Option board IEI-02 54
Option board MFM-01 54
Option boards ... 9
Option interface

base address 56
Overview

CANsync function blocks 189

P

Parameter access, sequence of 160, 184
Parameter command 132, 159

Processing .. 184
Receiving ... 183

port
RS232 .. 15
RS485 .. 16

Process data communication 82, 95, 100,
107, 240, 249

checking ... 112
Programming languages 9, 25
Project

information .. 34
start .. 34

project
new, open ... 26

Property
event task ... 39

PROPROG wt II .. 25
PROPROG wt II library 51

Q

Qualified Personnel 8

R

Read parameter
command ... 133

Real-time response 39
Reference value

Receiving ... 170
Reference value channel 147

Using .. 173
Reference value message frame 130, 147
Reference values

Sending .. 145
REGISTER_DLII_20bd00 42, 49

Registers .. 14
Request parameter value from slave 216
Resource .. 27, 2

settings .. 2
Resources

control dialog 32
Response channel 132
Retain flags .. 3
Router .. 7
RS232 port ... 1
RS485 port ... 1
RUN/STOP switch 36

S

Safety Information 7
Sample configurations 57
Send parameter value to slave 223
Sending the project to the target system 33
Set operating mode 210, 213
Setting the IP address 71
Seven-segment display 14, 36
Standard library 48, 49
Starting characteristics 128
State slave types for CANsync initialization

254
Status word .. 13
Structure 138, 16
Sync Net .. 5
Sync Option .. 5
SYNC signal ... 11
Synchronized status 129
SYSTEM1_DLII_20bd00 41, 43, 49
SYSTEM2_DLII_20bd00 41, 49

T

Technology component 48
cam disk ... 4
register controller 49
winder .. 4

Terminating resistor connector for CANsync 23
TIME_MEASURE_END 43
TIME_MEASURE_START 43
Trigger signal 52, 5

U

UNIVERSAL_20bd00 41, 49
Upload ... 13

End .. 13
Job .. 16

Upload command
Receiving ... 18

Upload procedure 136
Control Engenieering ����mega Drive-Line II 267
Baumüller Nürnber g GmbH 5.00005.02

Index
Upload response 136
Upload/download command 132
Upload/download job

Sequence of 186
User library ... 41

inserting into project 50

V

V-controller
Trigger Controller 54

W

Warm boot ... 34
WINDER_DLII_20bd00 42, 49
Write parameter

command ... 134

Z

ZWT file ... 51
268 Control Engenieering ����mega Drive-Line II
5.00005.02 Baumüller Nürnber g GmbH

	1 Safety Information
	2 Technical Data
	2.1 General
	2.2 Functionality
	2.3 Functional Structure

	3 Installation
	3.1 Displays and Operator Controls
	3.2 Display
	3.2.1 Seven-Segment Display
	3.2.2 LED Display

	3.3 Pin Assignments
	3.3.1 Setting the Slave Number
	3.3.2 Information on Configuration

	3.4 Connecting cables
	3.5 Accessories

	4 Omega Drive-Line II and PROPROG wt II
	4.1 PROPROG�wt�II – an Efficient, Powerful and Comprehensive Programming Tool
	4.2 Omega Drive-Line II Project
	4.3 Omega Drive-Line II Configuration
	4.4 Omega Drive-Line II Resource
	4.4.1 Communication and Connection
	4.4.2 Control Dialog for Resources
	4.4.3 The Omega Drive-Line II Board Seven-Segment Display
	4.4.4 Data Area
	4.4.5 The Omega Drive-Line II Event Tasks

	4.5 Omega Drive-Line II User Libraries
	4.5.1 Omega Drive-Line�II Firmware
	4.5.2 The Omega Drive-Line II Board Functions
	4.5.3 Die Omega Drive-Line II Data Types
	4.5.4 The Standard Function Block Libraries
	4.5.5 The Omega Drive-Line II Technology Components
	4.5.6 Inserting a User Library into a Project

	4.6 Omega Drive-Line II Option Interfaces, Interrupt Sources and Trigger Signals
	4.6.1 The Interrupt Sources and Trigger Signals
	4.6.2 Trigger Signal Interconnection and Timer Configuration via Function Block OPT_INIT
	4.6.3 Using Function Block OPT_INIT
	4.6.4 The Base Addresses of the Option Interfaces
	4.6.5 Controller-Specific Mapping of the Hardware Areas
	4.6.6 Sample Configurations
	4.6.7 Implementing a BAPS in a BAPS Event Task
	4.6.8 Implementing a high-precision BAPS in a timer event task
	4.6.9 Implementing a BAPS within the CANsync synchronous bus system
	4.6.10 Implementing a timer event task for cyclical serial communication.

	5 Ethernet (optional)
	5.1 General
	5.2 Setting the IP Address and the IP Mask
	5.2.1 Self-Selected, Fixed IP Address
	5.2.2 Self-Selected, Variable IP Address
	5.2.3 Preset, Variable IP Address (Delivery Status)

	5.3 Setting the Response with Routers on the Network
	5.4 Communication Between Omega Drive-Line II and PROPROG�wt�II via Ethernet

	6 BAPS Baumüller Drives Parallel Interface
	6.1 BAPS General
	6.2 Function Blocks for BAPS Overview
	6.2.1 BAPS_INIT
	6.2.2 BAPS_PAR_READ
	6.2.3 BAPS_PAR_WRITE
	6.2.4 BAPS_PD_COMM2
	6.2.5 BAPS_PD_COMM24
	6.2.6 BAPS_PD_COMM8
	6.2.7 BAPS_PD_CONTROL
	6.2.8 BAPS_SD_CONTROL

	7 CANsync
	7.1 General
	7.1.1 Overview
	7.1.2 Information on Programming

	7.2 Detailed Information on CANsync
	7.2.1 Structure of Message Frames
	7.2.2 Register Structure and Function of the Omega CANsync Master
	7.2.3 Register Structure and Function of the Omega CANsync Slave

	7.3 CANsync Function Blocks
	7.3.1 Function Blocks for the Synchronized CAN Overview
	7.3.2 CANsync_BC_MA0
	7.3.3 CANsync_BC_MA1
	7.3.4 CANsync_BC_MA2
	7.3.5 CANsync_BC_SL
	7.3.6 CANsync_COMM_CONTROL_MA
	7.3.7 CANsync_CONTROLWORD_MA
	7.3.8 CANsync_CONTROLWORD_SL
	7.3.9 CANsync_INIT
	7.3.10 CANsync_MODE_MA
	7.3.11 CANsync_MODE_SL
	7.3.12 CANsync_PAR_READ_MA
	7.3.13 CANsync_PAR_SL
	7.3.14 CANsync_PAR_WRITE_MA
	7.3.15 CANsync_PD_CFG_MA
	7.3.16 CANsync_PD_CFG_READ_MA
	7.3.17 CANsync_PD_CFG_READ_SL
	7.3.18 CANsync_PD_CFG_SL
	7.3.19 CANsync_PD_COMM_MA
	7.3.20 CANsync_PD_COMM_READ_MA
	7.3.21 CANsync_PD_COMM_READ_SL
	7.3.22 CANsync_PD_COMM_SL
	7.3.23 CANsync_SL_TYP_INIT
	7.3.24 CANsync_UPDOWNLOAD_MA
	7.3.25 CANsync_UPDOWNLOAD_SL

	8 Index

